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aMecatronic Section, Postgraduate Department, Instituto Politécnico Nacional - CIDETEC,
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Abstract

In recent years, mobile robots have been helpful systems to perform a wide

variety of complex tasks in daily life applications from industry, academy, and

home. These robots carry out mobility on flat terrains, mainly in narrow spaces

that are difficult to access or dangerous for humans. Therefore, increasing the

efficiency of their movements through control technologies has become a topic of

great interest for researchers. Among controllers, the linear ones are widely used

to improve the efficiency of mobile robots because of their simplicity, reliabil-

ity, and practicality, notwithstanding advanced control strategies. A well-tuned

linear controller can show outstanding performances in controlled environments

where the modeled and simulated conditions used for its adjustment are not too

far from reality. However, actual operating environments are subject to uncer-

tainties and disturbances that can hardly be accounted for during the controller

tuning process. The above compromises the performance of the mobile robot

in practice, and finding the appropriate controller parameters that enhance ro-

bustness becomes a crucial task. Therefore, this work presents a robust tuning

approach for the controller of an omnidirectional mobile robot based on the

solution of a nonlinear dynamic optimization problem through meta-heuristics.
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Robustness is incorporated in the optimization problem by minimizing the sen-

sitivity to the control performance indexes. Simultaneously, this is included

through dynamic and stochastic variations in the meta-heuristic optimizer hy-

perparameters. A comparative statistical analysis is performed using robust and

non-robust tuning approaches. Based on simulated and experimental tests, the

proposed robust approach shows notable performance improvements regarding

the non-robust one while minimizing operation errors in the presence of different

uncertainty magnitudes.

Keywords: controller tuning; intelligent control; meta-heuristic algorithm;

omnidirectional mobile robot; differential evolution.

1. Introduction

Performing automatic tasks efficiently with the least human intervention

has been one of main goals of humankind since the first industrial revolution

[1]. From that point, the evolution of the electrical, mechanical, control, and

computational sciences allowed the development of robots [2].5

Robots are programmable electromechanical systems able to perform multi-

ple complex automated tasks in various environments [3]. In the past, robotic

systems were mainly fix-based manipulators designed to operate within a pre-

defined workspace. They were dedicated to performing intensive and repetitive

tasks in assembly and manufacturing lines [4]. On the other side, modern robots10

are currently adopted in a wider variety of contexts, from the automation of do-

mestic tasks in small homes [5], rescue, and surveillance activities in the wild

[6].

The leap towards modern robotic systems was influenced by mobility. Nowa-

days, mobility is one of the most desirable features of robots [7]. This feature is15

related to the capacity of robots to perform extended sorts of movements, i.e.,

to move freely around the accessible physical space [8]. The above allows robots

to operate in larger workspaces and unknown environments.

The robotic systems that incorporate the mobility feature are referred to
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as mobile robots. This kind of system is present in almost any application20

that requires automated tasks in different locations, far enough apart to be

unreachable by a fix-based manipulator [9].

The mobile robots can operate on land, underwater, or in the air, and de-

velop different activities [10]. Terrestrial robots are especially useful to perform

complex tasks in narrow spaces that are difficult to access or dangerous to hu-25

mans [11]. Some recent examples of terrestrial robots applications include object

manipulation [12], lifting and transportation [13], construction [14], exploration

of unknown zones [15], map building [16], and surveillance and inspection [17].

The use of wheels or legs achieves mobility in terrestrial robots. Legged

robots provide an enhanced movement on irregular terrains [18], while wheeled30

robots are simpler, faster, more energy-efficient, and very effective on flat ter-

rains [19].

Among the wheeled robots, the omnidirectional ones are widely used in many

applications because of their ability to perform the simultaneous and indepen-

dent translation and rotation movements, allowing them to obtain relatively35

high and accurate responses when executing required tasks in flat terrains and

narrow scenarios [20, 21].

Omnidirectional Mobile Robots (OMRs) require suitable control systems to

exploit all the above advantages. Nevertheless, due to their highly nonlinear

behavior and the number of actuators required to govern each wheel indepen-40

dently, the control of OMRs is a hard task. Moreover, the implementation costs

of these systems must be affordable enough to support their use in domestic,

academic, or industrial activities [22].

Today, there are many advanced control alternatives for OMRs and other

mobile robots. In [23], a model predictive control that incorporates the system45

dynamics is adopted to take an OMR over a feasible path generated by the

potential field method. An effective cascaded Linear Quadratic Regulator on two

loops for the speed regulation of the motors and the position/orientation control

of an OMR is proposed in [24]. The work in [20] introduces an automatically

adjusted fuzzy controller for an OMR that can successfully handle dynamic50
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changes and navigation challenges. The proposals in [25, 26] utilize different

sliding mode controllers to deal with uncertainties and disturbances in OMRs.

The above control proposals are effective but have very complex structures

that are hard to adjust. Then, a high theoretical and technical knowledge is

required to implement these controllers in practice. Also, the computational55

cost of some alternatives makes them less affordable for a real application.

On the other hand, the Proportional Integral Derivative (PID) linear con-

troller has been one of the most extended control choices for many decades. Also,

it is known that the vast majority of industrial applications adopt a PID-like

controller [27]. The above is attributed to their simplicity (regarding their linear60

structure and low-cost implementation), universality (concerning their applica-

bility in any context), and effectiveness in governing many complex dynamic

systems such as the OMRs.

Like any other controller, the PID-like one has a set of parameters that must

be correctly adjusted to govern the OMR dynamics accurately. In different65

circumstances, a bad adjustment can cause performance losses and can even

damage the controlled system. The above is one of the problems in control

engineering known as controller tuning [28].

The PID-like controller tuning is a challenging task because there is an

immeasurable number of parameter combinations. Each choice has a different70

effect on the system (some choices could negatively affect the system), even

more when the system is subject to many different operating conditions beyond

those already imposed by its dynamic constraints [29].

The tuning of PID-like controllers and, in general, of any other control al-

ternative, can been addressed by four different approaches according to the tax-75

onomy proposed in [30], which includes (a) Analytical methods, (b) Heuristic

methods, (c) Optimization methods, and (d) Adaptive methods.

The approaches in (a) aim to ensure the stability of the closed-loop through

the use of analysis tools from control theory [31]. On the other hand, the meth-

ods in (b) use the expert knowledge of the control engineer over the measure-80

ments of the controlled variables to set the appropriate controller parameters
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[32]

About approaches in (a) and (b), there is no certainty that they can get

the best controller performance because they are not optimal methods. Signif-

icant lower performances of alternatives (a) and (b) have been reported when85

compared with optimal ones [33, 34]. Moreover, the effectiveness of the con-

trollers tuned by non-optimal methods can decrease even more when the plant

is too complex to be fully modeled or when the operating conditions induce

uncertainties or disturbances [35].

To handle the difficulties observed in the above non-optimal methods, the90

techniques in (c) state the tuning problem as a mathematical programming one,

whose aim is to find the controller parameters that produce the best performance

when controlling a dynamic system [36, 37, 38, 39].

Since the aforementioned complexity of the controller tuning carries over the

mathematical programming problem, the effectiveness of classical optimization95

techniques is limited, and the use of more advanced optimizers can be required

[40, 35]. In this sense, intelligent approaches such as the meta-heuristic op-

timization one have gained popularity in the last years [35, 41, 42]. In that

approach, the controller tuning problem, as a mathematical programming one,

can be successfully solved by meta-heuristic optimizers from evolutionary com-100

putation and swarm intelligence [43, 44].

Concerning the OMR, the approach (c) requires an accurate robot model

to test and evaluate enough controller parameter combinations through opti-

mization with meta-heuristics. The best parameters are implanted in the final

controller and remain fixed. The research in [45] uses the Genetic Algorithm105

(GA) and the Differential Evolution (DE) to tune the PID controller param-

eters and optimize the step response of an OMR. In [46], the Particle Swarm

Optimization (PSO) optimizes the PID controller parameters to accelerate the

reaching of the path goals with a mobile robot. A hybrid GA-PSO algorithm

is proposed in [47] to adjust the gains of the PI controller and reduce the tra-110

jectory tracking error. The work in [48] presents a comparative study of several

meta-heuristics and a gradient-based optimizer for the simultaneous minimiza-
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tion of the tracking error and the energy consumption through the PD controller

tuning for an OMR.

At this point, it is worth mentioning that in real operating environments, all115

dynamic systems are continuously subjected to uncertainties and disturbances,

which makes the models used for tuning inaccurate, and turns the tuning prob-

lem harder [49]. These two effects are typically complex, unpredictable, undesir-

able, and negatively affect the system operation. So, mathematical models can

not fully describe the physical phenomena around the robot [50, 51, 52]. Con-120

sequently, the calculated controller parameters are often unable to reach the

desired performance, even when obtained through meta-heuristic optimization

[53, 54, 55].

A way to deal with the problems described before is found in (d), where

the controller tuning is performed online based on the methods from previous125

classes. Particularly, adaptive methods based in (c) through the use of meta-

heuristics have shown significant performance advantages concerning the rest

of tuning alternatives when controlled systems are subject to uncertainties and

disturbances, which happens in practice most of the time [56, 57].

In this way, the controller parameters are adjusted continuously during the130

task execution in the robot. The above effectively handle uncertainties and dis-

turbances. Nevertheless, this approach requires a fast recalculation of the best

controller parameters through successive meta-heuristic optimization processes.

Hence, the computational cost of that approach is high and currently requires

a dedicated computer with a decent calculation capacity. Due to the previous135

comment, the online approach based on meta-heuristic optimization has only

been applied in simpler dynamic systems than the OMR. In [57], different meta-

heuristic optimizers were tested in the online controller tuning for the accurate

speed regulation of the DC motor. The work in [58] proposed an online tun-

ing method to reduce the response error and enhance the smoothness of the140

controller output for the four-bar mechanism.

Since the on-board batteries of OMRs have energetic limitations, which caps

the processing capacity, the tuning approach (d) can be unprofitable for a real
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application. Alternatively, the controller performance is compromised in (c)

methods since they require an accurately simulated environment and also a de-145

tailed OMR model. Such a model can be difficult to find in practice due to

the presence of uncertainties and disturbances. In this way, the controller pa-

rameters optimized from dynamic simulations may not achieve the best control

performance when implanted in a real prototype.

Despite the above difficulties, incorporating robustness features can deal150

with the model limitations of the (c) tuning methods. The robust tuning aims

to identify an optimal set of control parameters or controller gains that makes

the system or process insensitive to changes in the operating conditions such as

uncertainties and disturbances.

Although there are researches that address the robust tuning of the con-155

troller parameters, their proposals have been applied to high-order linear sys-

tems [59, 60]. Nevertheless, those proposals may not be effective enough when

controlling highly-nonlinear systems such as the OMRs. Moreover, incorporat-

ing the uncertainties and disturbances effects for robust tuning of the control

system has not been explored under the offline meta-heuristic optimization ap-160

proach.

For the above reasons, this research aims to incorporate robustness features

in both the optimization problem for tuning and the meta-heuristic optimizer

to enhance the ability of the controller to handle unmodeled uncertainties and

disturbances with a real OMR. Robustness is incorporated in the optimization165

problem by minimizing the sensitivity to the control performance indexes. Si-

multaneously, this is included through dynamic and stochastic variations in the

meta-heuristic optimizer hyperparameters.

So, the main contributions of the present work are the following:

1. The proposed robust tuning approach for the OMR controller formulated170

as a nonlinear dynamic optimization problem where the solution is through

a robust meta-heuristic optimizer. The main features of the proposal are:

i) the obtained controller gains produce control performance indexes as
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insensible as possible to uncertainty variations without knowing the uncer-

tainty variation bounds, and ii) it is not required the careful selection of175

the controller gain bounds to achieve real experimental results (laboratory

tests). Those features can be useful for practical purposes.

2. The experimental verification of the robust tuning approach with a physi-

cal prototype where the comparative statistical evidence with a non-robust

tuning approach shows the effectiveness of the proposal.180

The rest of the paper is organized as follows. Section 2 presents the details of

the proposed robust tuning approach. The meta-heuristic operation is explained

in Section 3. The experimental testbed and the results are discussed in Section

4. Finally, the conclusions are drawn in Section 5.

2. General overview of the robust tuning approach of controllers185

through dynamic optimization

The proposed Robust Tuning Approach for Controller Gains (RTACG) of

mechatronic systems is formulated as an offline nonlinear dynamic optimization

problem, where the control design objectives, and also their variations under

the presence of uncertainties, are minimized to guarantee a closed-loop system190

performance as insensible as possible to such changes. In order to apply the

RTACG, it is important to consider the following assumptions: 1) There is a

valid dynamic model of the plant to be controlled where the numerical simulation

largely replicates reality. 2) The dynamic model is represented as (nonlinear)

differential equations. 3) The plant must be fully actuated. 4) There is a control195

system parameterized in the corresponding gains that stabilize the plant. 5)

The task (desired trajectory) must be smooth and time-parameterized. 5) The

uncertainty parameter must be implicitly or explicitly included in the objective

function to make it robust. 6) The uncertainty variations and their bounds are

not known.200

The RTACG starts from the formulation of a Non-Robust Tuning Approach,

which is stated as follows:
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min
p∗∈Rnp

Ĵ(p) (1)

Ĵ =

∫ tf

0

nĴ∑
i=1

µiL̂i(x, p, ξ, u, t) dt (2)

subject to:

dx

dt
= F(x, p, ξ, u, t) (3)

x(0) = x0

gj(p, t) ≤ 0 j = 1, . . . , ng (4)

hk(p, t) = 0 k = 1, . . . , nh (5)

pmin ≤ p ≤ pmax (6)

The non-robust objective function Ĵ (2) involves nĴ control performance

indexes. The i − th control performance index is represented by the positive

semidefinite function L̂i, which must be of at least class C1. Each performance205

index is weighted by the term µi such that the multi-objective optimization

problem is transformed into a single-objective optimization problem by using the

weighted sum approach to fulfill one trade-off of the Pareto front [61]. The plant,

represented in the state space vector x ∈ Rnx , is modeled through nonlinear

differential equations (3) with the initial condition x0, where the control system210

is defined in u = Fu(x, p, ξ, t) ∈ Rnu . The static and dynamic constraints,

inherent in the controller tuning, are included in (4) and (5) for the inequality

and equality ones, respectively. The controller gains are grouped in the vector

p ∈ Rnp with the lower and upper limits pmin and pmax, respectively. The

uncertain parameter vector ξ = ξ̄ + ζ ∈ Rnξ consists of terms whose values are215

not previously known by the designer, and varies ζ units from its nominal known

value ξ̄. The Non-Robust Tuning Approach handles the parameters associated

with the optimization problem in their nominal values without considering the

variations ζ, i.e., ξ = ξ̄. Nevertheless, the obtained solution from the Non-

Robust Tuning Approach might be sensitive to changes in the nominal values220

of the design variables, the design parameters, and the state vector.
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Then, the next step in the RTACG is to know the rate of change of the

non-robust objective function ∆Ĵ concerning the variations in the uncertainty

vector ∆ξ, which can be obtained by using the first-order Taylor expansion of

the non-robust objective function Ĵ around the nominal value of the uncertainty225

vector ξ̄, i.e.,

∆Ĵ = Γ |ξ=ξ̄ ∆ξ (7)

where Γ |ξ=ξ̄=
[
∂Ĵ
∂ξ1

, ..., ∂Ĵ
∂ξnξ

]∣∣∣
ξ=ξ̄
∈ R1×nξ , and the j− th gradient ∂Ĵ

∂ξj

∣∣∣
ξj=ξ̄j

∈

R is expressed as

∂Ĵ

∂ξj

∣∣∣∣∣
ξ=ξ̄

=

∫ tf

0

nĴ∑
i=1

µi

((
∂L̂i
∂x

+
∂L̂i
∂u

∂u

∂x

)
∂x

∂ξj
+
∂L̂i
∂u

∂u

∂ξj
+
∂L̂i
∂ξj

)∣∣∣∣∣
ξ=ξ̄

dt

=

∫ tf

0

nĴ∑
i=1

µiJ̃i,j

∣∣∣∣∣
ξ=ξ̄

dt (8)

The j−th gradient ∂Ĵ
∂ξj

∣∣∣
ξj=ξ̄j

requires the sensitivity equation ∂x
∂ξj

∣∣∣
ξ=ξ̄
∈ Rnx

of the state vector x. This can obtain by deriving both sides of the dynamics230

equation in (3) with respect to the j − th uncertainty ξj .

∂ẋ

∂ξj

∣∣∣∣
ξ=ξ̄

=
∂F(x, p, ξ, u, t)

∂ξj

∣∣∣∣
ξ=ξ̄

d

dt

∂x

∂ξj

∣∣∣∣
ξ=ξ̄

=

((
∂F
∂x

+
∂F
∂u

∂u

∂x

)
∂x

∂ξj
+
∂F
∂u

∂u

∂ξj
+
∂F
∂ξj

)∣∣∣∣
ξ=ξ̄

(9)

Then, if the terms of the gradient vector Γ |ξ=ξ̄≈ 0 in (7) are minimized,

the variations in the non-robust objective function Ĵ , due to the changes in the

uncertainty parameter vector ξ, are decreased.

Finally, the RTACG, formulated as an offline nonlinear dynamic optimiza-235

tion problem, consists of finding the robust control gains included in p∗r that

simultaneously minimize the aggregate function that involves nĴ control per-

formance indexes L̂i(x, p, ξ, u, t), and also the square of the nĴ × nξ gradients

of such indexes concerning the uncertainty vector ξ. The optimization problem
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is formally stated in (10)-(17), where the i − th control performance index is240

weighted by the term µi, while its gradient with respect to the j−th uncertainty

parameter is weighted by the term µ̃i,j considering µ̄i,j = µ̃i,jµ
2
i .

min
p∗r∈Rnp

J̄(p) (10)

J̄ = Ĵ +

nξ∑
j=1

µ̃i,j
∂Ĵ

∂ξj

∣∣∣∣∣
2

ξ=ξ̄

(11)

=

∫ tf

0

nĴ∑
i=1

µiL̂i(x, p, ξ, u, t) +

nξ∑
j=1

µ̄i,j J̃
2
i,j

∣∣∣
ξ=ξ̄

 dt

(12)

subject to:

dx

dt
= F(x, p, ξ, u, t) (13)

x(0) = x0

d

dt

∂x

∂ξj

∣∣∣∣
ξ=ξ̄

=

((
∂F
∂x

+
∂F
∂u

∂u

∂x

)
∂x

∂ξj
+
∂F
∂u

∂u

∂ξj
+
∂F
∂ξj

)∣∣∣∣
ξ=ξ̄

(14)

∂x

∂ξj
= 0 ∀ j = 1, . . . , nξ

gj(p, t) ≤ 0 j = 1, . . . , ng (15)

hk(p, t) = 0 k = 1, . . . , nh (16)

pmin ≤ p ≤ pmax (17)

It is important to note that RTACG minimizes the control performance in-

dexes, as well as their changes due to the uncertainty vector, and considers

the sensitivity state vector into the formulation. The main advantages of the245

proposal are: i) the obtained controller gains produce closed-loop system re-

sponse characteristics (related to the control performance indexes) as insensible

as possible to changes in the uncertainties, improving the execution of the task.

ii) Unlike the case of the Non-Robust Approach presented in [48], the proposed

RTACG does not require a careful selection of the controller gain bounds to pro-250

vide satisfactory results in a real experiment (laboratory tests). This is because
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the sensitivity state vector produces the information of the environment with

the uncertainty vector, such that the obtained gains are more in line with the

real scenario. iii) The uncertainty variation bounds are indirectly adjusted by

the gradient information of the control performance indexes. So, by minimizing255

those indexes reduces the uncertainty variations such that the selection of their

bounds is not required in the proposed RTACG.

2.1. Application of the proposed RTACG in Omnidirectional Mobile Robots

One of the main issues related to the N-RTACG in a real environment, is

that the variations from their nominal values of the design variables, design260

parameters, or the state vector can significantly influence the feasibility and the

closed-loop performance of the obtained tuning in the offline dynamic optimiza-

tion problem. Such variations induce a high probability of violating constraints

and yielding sudden changes in the performance functions related to the control

performance indexes [62]. The proposed Robust Tuning Approach for Controller265

Gains (RTACG) incorporates protection against possible sources of uncertain-

ties introduced in the system or the design environment. In many cases, the

uncertainty variation bounds are often unknown, so the proposal reduces their

effects without considering such bounds by incorporating the gradient of the

control performance indexes.270

For the particular case of the controller tuning for the OMR presented in

[48], when derivative control gains in the N-RTACG are included as the control

design variables, those tend to their upper value at the end of the optimization

process. Real experimental tests are required to set the corresponding limits in

such gains [30]. When those gains increase, the OMR velocity estimation also275

increments the noise and provokes vibrations in the OMR [48]. This leads the

search space in the N-RTACG to be necessarily reduced (shrinkage of the control

gain bounds) to avoid the increment of noise while estimating the velocity. It

does not considerably affect the trajectory tracking. For this reason, the OMR

Cartesian velocity ξ̄ = [x4, x5, x6]T ∈ R3 is proposed in the present work as the280

nominal value of the uncertain parameter vector ξ ∈ R3 to find control gains
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that diminish the changes of the trajectory tracking under the noise effect in

such velocity.

The necessary elements to formulate the proposed RTACG are stated in this

section for the particular study case related to the control of an OMR under285

uncertainties in the linear and angular velocity of the OMR Cartesian space.

The OMR dynamics consider the following assumptions to keep the mathe-

matical derivation as simple as possible and without real loss of generality [63]:

1) Rigid cart with non-deformable wheels are considered. 2) The movement

of the OMR is in a horizontal plane. 3) The friction is not set down. The290

schematic diagram of the OMR is shown in Fig. 1, where the OMR dynamics

is represented as,

ẋ = f(x, p, ξ) + g(x, p, ξ)u ∈ R6 (18)

and its terms are detailed in (19)-(20) with λ = 1
2mr2+3J , κ± = sinx3 ±

√
3 cosx3, and η± = cosx3 ±

√
3 sinx3.

f(x, p, ξ) =
[
x4 x5 x6 −3Jλx6x5 3Jλx4x6 0

]T
∈ R6 (19)

g(x, p, ξ) =



0 0 0

0 0 0

0 0 0

−λrκ− 2rλ sinx3 −λrκ+

λrη+ −2rλ cosx3 λrη−

Lr
3JL2+Izr2

Lr
3JL2+Izr2

Lr
3JL2+Izr2


∈ R6×3 (20)
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Figure 1: Schematic diagram of the OMR.

The state vector is denoted by x = [x1, x2, x3, x4, x5, x6]
T

= [xw, yw, φw,295

ẋw, ẏw, φ̇w

]T
∈ R6. The first three elements of x correspond to the linear/angular

position of the OMR, and the latter to their velocities. The desired state vector

is represented by x̄ =
[
x̄d, ȳd, φ̄d, ˙̄xd, ˙̄yd,

˙̄φd

]T
∈ R6.

The task-space PD controller given in (21), is selected to track the trajectory.

u = J̆T (kpe+ kdė) ∈ R3 (21)

The state error vector and its velocity are defined as e = [x̄d − x1, ȳd − x2,300

φ̄d − x3

]T ∈ R3, ė =
[

˙̄xd − x4, ˙̄yd − x5,
˙̄φd − x6

]T
∈ R3, respectively. The

control gains are grouped in the matrices kp = diag (kp1, kp2, kp3) ∈ R3×3 and

kd = diag (kd1, kd2, kd3) ∈ R3×3. The matrix J̆ ∈ R3×3, related to the Jacobian

one of the omnidirectional mobile robot dynamics, is displayed in (22).

J̆ =


−κ

−

3
2
3 sinx3 −κ

+

3

η+

3 − 2
3 cosx3

η−

3

1
3L

1
3L

1
3L

 (22)

The N-RTACG is proposed in [48], where the dynamic optimization problem305

formulation is given in (23)-(28).
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min
p∗∈R6

Ĵ(x, p, ξ) (23)

where

Ĵ = µ1Ĵ1 + µ2Ĵ2 (24)

Ĵ1 =

∫ tf

0

L̂1(x, p, ξ)dt (25)

Ĵ2 =

∫ tf

0

L̂2(x, p, ξ)dt (26)

subject to:

dx

dt
= f(x, p, ξ) + g(x, p, ξ)u (27)

x(0) = x0

pmin ≤ p ≤ pmax (28)

In the N-RTACG, two non-robust performance indexes, related to the lin-

ear/angular position accumulated error Ĵ1 of the OMR (25), and the accumu-

lated energy consumption Ĵ2 of the OMR motors (26), are taken into account

in an aggregate function Ĵ (24). The functions L̂1 = e2
1(t) + e2

2(t) + L2e2
3(t)310

and L̂2 = u2
1(t) +u2

2(t) +u2
3(t), related to the control performance indexes, con-

sider the sum of the squared position errors and the sum of the squared motor

wheel torques at each time instant t, respectively. The terms µ1 = 0.95 and

µ2 = 0.05 in (24) involve an a priori preference selected for the N-RTACG,

where L = 0.2870m. The design variable vector p = [kp1, kp2, kp3, kd1, kd2, kd3]T315

includes the gains of the task-space Proportional-Derivative (PD) controller.

The dynamic constraint consists of the closed-loop control system dynamics

(27) with the task-space PD controller (21). A parameterized hypocycloid

trajectory (29)-(31) is the task to be executed by the robot in the Xw − Yw
plane, considering a cosine movement in its orientation. A smooth path ϕ(t) =320

(126E − 5)t5 − (42E − 5)t6 + (5.4E − 5)t7 − (0.315E − 5)t8 + (0.70E − 8)t9 is

included in the trajectory for taking the robot from its start position to the ini-

tial position of the trajectory. For more details of the N-RTACG, please consult
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[48].

x̄d(t) =

 ϕ(t) ∀ t ≤ 10

0.8181 cos(0.1047t) + 0.1818 cos(0.4712t) ∀ t > 10
(29)

ȳd(t) =

 0 ∀ t ≤ 10

0.8181 sin(0.1047t)− 0.1818 sin(0.4712t) ∀ t > 10
(30)

φ̄d(t) =

 0.4363ϕ(t) ∀ t ≤ 10

0.4363 cos(0.0523t) ∀ t > 10
(31)

In the corresponding study case, the rate of change of the squared position325

error sum L̂1, with respect to the j − th uncertainty ξj , is considered in the

proposed Robust Tuning Approach for Controller Gains (RTACG). Then, the

gradient ∂L1

∂ξj

∣∣∣
ξ=ξ̄

is computed as

J̃1,j

∣∣∣
ξ=ξ̄

=
∂L̂1

∂ξj

∣∣∣∣∣
ξ=ξ̄

= −2

(
e1
∂x1

∂ξj
+ e2

∂x2

∂ξj
+ L2e3

∂x3

∂ξj

)∣∣∣∣
ξ=ξ̄

(32)

where the state sensitivity vector ∂x
∂ξj

∣∣∣
ξ=ξ̄

regarding the j − th uncertainty ξj is

given by330

∂ẋ

∂ξj

∣∣∣∣
ξ=ξ̄

=
∂(f(x, p, ξ) + g(x, p, ξ)u)

∂ξj

∣∣∣∣
ξ=ξ̄

d

dt

∂x

∂ξj

∣∣∣∣
ξ=ξ̄

=

(
A
∂x

∂ξj
+

∂g

∂x3
u
∂x3

∂ξj
+B

)∣∣∣∣
ξ=ξ̄

(33)

where ∂g
∂x3
∈ R6×3, A = ∂f

∂x + g ∂u∂x ∈ R
6×6, B = g ∂u∂ξj + ∂f

∂ξj
∈ R6.

Formally, the offline dynamic optimization problem for the RTACG is formu-

lated in (34)-(38). This finds the robust control gains p∗r that simultaneously

minimize the position errors (25), their change rate (32), and the energy con-

sumption (26), grouped in the weighted performance function (35), subject to335

the differential equations related to the dynamics of the closed-loop system (36),
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as well as the sensitivity vector (37), and also, the bounds in the control gain

design variable vector (38).

min
p∗r∈R6

J̄(x, p, ξ) (34)

J̄ =

N−RTACG︷ ︸︸ ︷
2∑
i=1

µiĴi +

sensitivity to position errors︷ ︸︸ ︷∫ tf

0

3∑
j=1

µ̄1,j J̃
2
1,j

∣∣∣
ξ=ξ̄

dt︸ ︷︷ ︸
RTACG

(35)

subject to:

dx

dt
= f(x, p, ξ) + g(x, p, ξ)u (36)

x(0) = x0

d

dt

∂x

∂ξj

∣∣∣∣
ξ=ξ̄

=

(
A
∂x

∂ξj
+

∂g

∂x3
u
∂x3

∂ξj
+B

)∣∣∣∣
ξ=ξ̄

(37)

∂x

∂ξj
= 0 ∀ j = 1, ..., nξ

pmin ≤ p ≤ pmax (38)

Note: The MATLABr code associated with the optimization of the RTACG340

approach is shown in https://www.dropbox.com/sh/qy0pjkb5qyu9kin/AAD2YRTkrZficjXIuWXd6yqOa?

dl=0 for making more explicit the implementation details.

3. Differential Evolution (DE)

In the previous section, the proposed RTACG is formulated as a dynamic op-

timization problem. In this formulation, the OMR dynamic behavior (dynamic345

system) is represented through nonlinear differential equations. The transcrip-

tion method is necessary to convert the original continuous-time formulation

(infinite-dimensional optimization problem) into a discrete-time formulation

(discrete-dimensional optimization problem) to apply nonlinear programming

or metaheuristic algorithms in the solution of the problem [64]. In the case350
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presented in this paper, the control signal is parameterized using the task-space

PD controller. The OMR dynamics and the system sensitivity equations are

converted into a finite set of states through their solutions by the Euler method.

It is important to mention that using the Euler method in the solution of the

nonlinear differential equations required by the dynamic optimization problem355

(using the transcription method), the satisfaction (feasibility) of the dynamic

constraints given in (18) and (37) are fulfilled. So, Differential Evolution (DE)

can be used to solve the RTACG.

DE is a meta-heuristic technique inspired in the natural evolution according

to the Neo-Darwinian theory [65]. DE considers three evolutionary operations:360

mutation, crossover, and selection, as is detailed in the next subsections.

As the RTACG is a nonlinear dynamic optimization problem, the self-adaptive

Differential Evolution from [66] is used to solve it. The algorithm outperforms

the original DE [65], and the Fuzzy Adaptive Differential Evolution algorithm

(FADE) [67] in high dimensional benchmark problems. This is because the al-365

gorithm has a self-adaptation mechanism in the F and CR parameters to handle

the dynamic variation of the fitness landscape over time. This adaptation im-

proves the tracking of the promising solution movement in the search space and

finds enhanced competitive solutions in the benchmark optimization problems

[68, 69]. Hence, the self-adaptive differential evolution increases the reliability370

of the obtained solution.

The general operation of the self-adaptive Differential Evolution is observed

in Algorithm 1 for its variant DE/Rand/1/Bin. First, a population with NP

individuals (candidate solutions to the optimization problem) is randomly gener-

ated within the search space. Each individual corresponds to the control design375

variable vector pr in the RTACG. For each generation, G, every individual ~̂xGi

in the population combines with a mutant which is generated by the difference

of other different individuals at given rates F and CR to create an offspring

denoted by ~̂uGi .

Then, the individual ~̂xGi competes with its offspring ~̂uGi using a fitness indi-380

cator to determine which one must persist in the next generation as ~̂xG+1
i . The
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value of the objective function with the computation of the OMR dynamics and

state sensitivity dynamics is used to construct the fitness indicator. This process

is repeated during Gmax generations. Finally, the best individuals are found in

the population when the maximum generation Gmax is reached. Therefore, the385

robust control gains p∗r are found by selecting the best individual in the last

generation.
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Algorithm 1 Self-adaptive Differential Evolution Rand/1/Bin.

1: Input: NP, Gmax, pmin, pmax.

2: Output: p∗r

3: Begin

4: G← 1

5: for i← 1 to NP do

6: Generate a random individual ~̂xGi in search space ∀ i = 1, . . . , NP.

7: Simulate dynamics (36) and sensitivity vector (37) for ~̂xGi based on Algorithm 2.

8: Evaluate J̄(~̂xGi ).

9: end for

10: Randomly initialize F 0
i ∈ (0, 1) and CR0

i ∈ (0, 1) ∀ i = 1, . . . , NP.

11: while G ≤ Gmax do

12: for i← 1 to NP do

13: Calculate self-adaptative mechanism in the FGi (40) and CRGi (42) parameters.

14: Generate an offspring with operations: Mutation (39) and Crossover (41) for ~̂uGi .

15: Replace ~̂uGi outside the boundary with a random value in [pmin, pmax][70].

16: Simulate dynamics (36) and sensitivity vector (37) for ~̂uGi based on Algorithm 2.

17: Evaluate J̄(~̂uGi ).

18: if J̄(~̂uGi ) is better than J̄(~̂xGi ) then

19: ~̂xG+1
i ← ~̂uGi

20: else

21: ~̂xG+1
i ← ~̂xGi

22: end if

23: end for

24: G← G + 1

25: end while

26: Initialize p∗r with the best solution in the last population.

27: End
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Algorithm 2 Numerical simulation of the OMR dynamics and the sensitivity.

1: Input: The design parameter vector p presented in ~̂xGi or ~̂uGi .

2: Output: The state vector x(t), and the sensitivity vector ∂x(t)
∂ξj

∀ j = 1, ..., nξ.

3: Begin

4: Set the initial condition x(0) = x0 to the differential equation that describes

the OMR dynamics.

5: Set the initial condition ∂x(0)
∂ξj

= 0 ∀ j = 1, ..., nξ to the sensitivity differential

equation.

6: Divide the time horizon t = [t0 = 0, t1 = ∆t, t2 = 2∆t, ..., tf = N∆t] in

N + 1 intervals with a step size (integration time) of ∆t.

7: for i← 0 to N − 1 do

8: Calculate the trajectory (29)-(31) in the time ti.

9: Evaluate the task-space PD controller (21) in the state vector x(ti).

10: Solve the nonlinear differential equation of the OMR dynamics (18) with

the Euler’s method for the time ti + ∆t.

x(ti + ∆t) = x(ti) + ∆t dx(ti)
dt

11: Solve the nonlinear differential equation of the sensitivity dynamics (33)

with the Euler’s method for the time ti + ∆t.

∂x(ti+∆t)
∂ξj

= ∂x(ti)
∂ξj

+ ∆t d
dt
∂x(ti)
∂ξj

12: end for

13: End

Mutation

Individuals in the population are mutated to generate another population of

NP mutant individuals ~vGi . The mutation process makes changes to the original390

information of individuals (number of design variables D) using the difference

of other individuals, as seen in the equation (39). The terms r1, r2 and r3

are the indexes of randomly selected individuals such that r1 6= r2 6= r3 6= i,

j = 1, . . . , D.

vGi,j = x̂Gr1,j + FGi (x̂Gr2,j − x̂
G
r3,j) (39)
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The scale factor FGi is a positive parameter that controls the magnitude of the395

difference (x̂Gr2,j − x̂
G
r3,j

). The self-adaptation mechanism of the FGi parameter

[71] is adopted and shown in (40), where Fl=0.1, Fu=0.9 and ψ=0.3.

FGi =

Fl + rand(0, 1)Fu if rand(0,1)< ψ

FG−1
i otherwise

(40)

Crossover

Crossover is the process by which a population of NP descendant individuals

is generated. This process is made by combining the genetic material of the400

original individual (x̂Gi,j) with the material of the mutant one (vGi,j). This work

uses the uniform crossover, as seen in the equation (41).

ûGi,j =

 vGi,j if rand(0, 1) < CRGi or j = jrand

x̂Gi,j otherwise
(41)

The self-adaptation mechanism proposed in [71] is also included in the pa-

rameter CRGi , where ω=0.7 is selected. This mechanism leads to better individ-

uals with a higher chance of surviving and producing descendants, improving405

the exploration/exploitation of the search space, and this is shown below:

CRGi =

rand(0, 1) if rand(0,1)< ω

CRG−1
i otherwise

(42)

Selection

Finally, the individuals that persist in the next-generation G+ 1 are chosen

between each of the generated solution ~̂uGi and the original solution ~̂xGi according

to the fitness indicator.410

4. Results

In this section, the proposed approach called RTACG is applied to the con-

troller of an OMR. A comparative study of the proposal is carried out with a
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control tuning approach reported in the recent specialized literature. The Non-

Robust Tuning Approach for Controller Gains presented in [48] is considered in415

the comparison to highlight the effectiveness of the proposal under the effect of

Gaussian noise in the Cartesian velocity estimation of the OMR.

First, the empirical analysis on the efficiency of the evolutionary algorithm

(self-adaptive Differential Evolution) is given in Section 4.1 to search for the

best solution for both approaches (RTACG and N-RTACG). Then, once the420

controller gains for both approaches are obtained, comparative results in sim-

ulation of the closed-loop system are described in Section 4.2. Finally, those

gains are set in a laboratory prototype (real-time experimentation) to perform

a comparative analysis in a real environment, and the discussion is given in

Section 4.3.425

4.1. Discussion of the algorithm performance in the controller tuning approaches

4.1.1. Differential evolution performance with algorithm parameter variations

In the first part of the Section 4.1, the performance of the self-adaptive

differential evolution is compared with the results obtained by the original dif-

ferential evolution (original DE), which the latter considers fixed parameters in430

CR and F. The main purpose is to show the effects of the self-adapting param-

eters CR and F in the differential evolution algorithm for the solution of the

proposed RTACG (nonlinear dynamic optimization problem), and confirm the

competitive and reliable performance of the algorithm.

The parameters associated to the optimization problems are set as follows:435

the control design variable bounds are proposed as pmin ∈ [0, 0, 0, 0, 0, 0]T ∈

R6 and pmax ∈ [3000, 3000, 3000, 100, 100, 100]T ∈ R6. The weights in the

performance function are established as µ1 = 0.95, µ2 = 0.05, µ̄1,1 = µ̄1,2 =

µ̄1,3 = 1e16. The first two weights µ1 and µ2 were selected according to [48], and

the last ones were empirically proposed based on a set of trials with different440

weight values in the optimization problem. The above with the purpose of

obtaining the most suitable control performance. The differential equations

that describe the OMR dynamics and the state sensitivity vector are solved
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Table 1: Kinematic and dynamic parameters of the OMR.

Parameter Description V alue Units

r Wheel radius 0.0625 m

L Wheel distance from the mass center 0.2870 m

m Mass 16.3190 kg

J Wheel inertia 5.82E − 4 kg ·m2

Iz Mobile robot inertia 0.5160 kg ·m2

by the Euler’s integration method with the initial condition x0 = 0 ∈ R6, the

integration time ∆t = 5ms and the final time tf = 130s. The OMR dynamics445

uses the kinematic and dynamic parameters of Table 1 [48]. On the other

hand, the same population size NP = 50 and the same maximum generation

number Gmax = 700 are selected for each algorithm. Those parameters were

empirically chosen by visualizing the generation where the performance function

value is steady and has a suitable performance.450

Both Differential Evolution algorithms are implemented in MATLABr2020

over a PC with a XenonrE5-2603V2 1.8GHZ CPU and 32GB in RAM. The

computational complexity of the proposed RTACG is related to the compu-

tational complexity of the Differential Evolution algorithm, which solves the

problem. The computational complexity [72] depends on the performance func-455

tion evaluation J̄(p), the maximum number of generations Gmax, and the size

of the population NP . So, the computational complexity in the Big O notation

is O(J̄(p) ·NP · Gmax), and the average time to perform a single execution of

the algorithm for solving the RTACG is around twelve hours.

The comparative study involves one hundred executions with different fixed460

values of CR and F in the original DE, and also other one hundred executions

with different fixed values of ψ and ω in the self-adaptive Differential Evolution.

The descriptive statistics of the data obtained from the best objective func-

tion values of the executions per each algorithm is showed in Table 2. The mean

(mean(J̄)), the standard deviation (σ(J̄)), the maximum and minimum values465
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(max(J̄) and min(J̄)) are provided in the columns of such a table. In addition,

the controller gains of the best and the worst executions with respect to the

performance function are displayed in Table 3.

Table 2: Descriptive statistics of the performance function J̄ through one hundred different

executions in the original differential evolution and in the self-adaptative differential evolution.

mean(J̄) σ(J̄) max(J̄) min(J̄)

Original DE 8.58049E − 3 1.62E − 6 8.589026168902798E − 3 8.5796547017689E− 3

Self-adaptative DE 8.57965E− 3 4.97E− 16 8.579654701773048E− 3 8.5796547017691E − 3

Table 3: Obtained PD control gains by using the original differential evolution and self-

adaptative differential evolution.

Original DE CR F ω ψ kp1 kp2 kp3 kp4 kp5 kp6

Best 0.80 0.50 - - 1483.5170 1483.4499 2636.8217 68.0400 67.9976 16.1084

Worse 1.00 0.10 - - 1667.8055 1668.9065 1028.6443 46.8862 47.4172 10.8110

Self-adaptative DE CR F ω ψ kp1 kp2 kp3 kp4 kp5 kp6

Best [0.10, 0.90] [0.10, 0.90] 0.70 0.30 1483.5170 1483.4498 2637.6843 68.0400 67.9976 16.1031

Worse [0.10, 0.90] [0.10, 0.90] 0.10 0.30 1483.5309 1483.4637 2646.0829 68.0402 67.9978 16.1483

The following highlights from the Tables 2 and 3 are: i) The results of the

self-adaptative DE show a reliable performance through the executions with470

different algorithm parameters because the average of the objective function

values is lower than the one in the original DE (see Table 2). Besides, the

standard deviation indicates that in all executions of the self-adaptative DE,

the obtained solutions have very similar performance functions. On the other

hand, the design variable vector in the self-adaptative DE is less affected by475

the algorithm parameters than the original DE results, as observed in Table 3

with the best and the worst design variable vectors. Hence, the convergence of

the self-adaptative DE is hardly affected by the changes in algorithm parame-

ters. ii) The self-adaptative DE presents competitive results because, through

executions with different algorithm parameters, the obtained solutions present480
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a similar competitive performance. While the original DE, a suitable solution

is obtained through a rigorous tuning procedure of the algorithm parameters.

Hence, the self-adaptative DE does not require a careful selection of the al-

gorithm parameter to obtain a competitive solution. Also, the computational

time to search for a competitive solution in the RTACG is decreased with self-485

adaptative DE because it does not require an exhaustive tuning procedure of

the algorithm parameters, i.e., whatever selection of the algorithm parameter

provides a competitive solution.

4.1.2. Performance of the self-adaptive DE in the RTACG and N-RTACG ap-

proaches.490

In the second part of the Section 4.1, the analysis of the self-adaptive

DE/Rand/1/Bin behavior is presented when separately solving the RTACG and

N-RTACG approaches. The main purpose is to obtain the best design variable

vector among the thirty independent executions for each approach because of

the stochastic nature of the algorithm [73].495

The parameters associated to the optimization problems for both approaches

and those corresponding to the self-adaptive DE algorithm are set according to

Section 4.1.1.

The descriptive statistics of the thirty executions (thirty samples) of the self-

adaptive DE/Rand/1/Bin for each optimization problem related to the RTACG500

and N-RTACG are presented in Table 4. Each sample for statistics is related to

the best objective function (the best fitness of individuals in the last generation)

at each execution. The first two columns are related to the mean values of the

thirty samples, and the last ones include the standard deviation of the samples.

It is observed, in the standard deviation, that the performance function value505

through the executions converges to a similar value (mean value). This indicates

that the best solutions through the executions converge to the same region of the

search space, and so, sub-optimal solutions are not found. Then, the obtained

solutions are referred to in this paper as a global one.

The performance function behavior of the best individuals through execu-510
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Table 4: Descriptive statistics of the obtained results through the use of self-adaptive

DE/Rand/1/Bin.

mean(Ĵ) / mean(J̄) σ(Ĵ) / σ(J̄)

8.5761E − 3 / 8.5796E − 3 7.541E − 18 / 1.481E − 16

Ĵ: Performance function for the N-RTACG. J̄: Performance function for the RTACG.

tions of the self-adaptive DE/Rand/1/Bin in both tuning approaches is shown

in Fig. 2. The algorithm convergence requires around 200 generations for the

RTACG and around 50 generations for the N-RTACG. The slow converge in

the proposed RTACG is because of the optimization problem complexity by

incorporating the sensitivities, i.e., more complexity in the controller tuning515

approach results in more generation in the algorithm to converge.
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Figure 2: Behavior of the performance function though the generation in the RTACG and

N-RTACG using the self-adaptive DE/Rand/1/Bin.

The robust control gains p∗r obtained by the RTACG, and the non-robust

control gains p∗ acquired by the N-RTACG are displayed in Table 5. These

gains correspond to the best design variables vector of the thirty independent

executions that solve the RTACG and N-RTACG problems, respectively. It is520

important to note that the gains kp2
and kd1

obtained by the N-RTACG attain

their upper limits (i.e., there are active box constraints). While the robust
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Table 5: Obtained gains by using RTACG and N-RTACG.

kp1 kp2 kp3 kd1 kd2 kd3

p∗r 1483.5170 1483.4498 2637.6842 68.0400 67.9976 16.1031

p∗ 1148.8169 2999.9999 2576.3175 99.9999 16.2817 15.8837

control gains p∗r are into their bounds. This indicates that the sensitivity of

the linear and angular position concerning the velocity allows finding feasible

solutions into their limits, and an additional rigorous procedure to set the control525

gain bounds described in the N-RTACG [48], is not required.

4.2. Robustness analysis for the RTACG in simulation

In this subsection, the comparative study in numerical simulation of the

closed-loop system of the controller with the OMR is presented with the use

of the robust and non-robust gains obtained from Table 5. In the simulation,530

different disturbances in the velocities of the OMR are included in the differ-

ential equations of the OMR dynamics to analyze the changes in the control

performance index (trajectory tracking) with respect to velocity variation, and

so, to show the effectiveness of the RTACG in the trajectory tracking of the

OMR under uncertainty variations.535

Hence, the performance of the controller with the gains given in Table 5 for

the proposed RTACG is compared with those acquired by the N-RTACG. The

simulation results include random changes in the lineal and angular velocities

of the OMR. This simulates Gaussian noise in the velocity states, and these

states are considered as the uncertainty vector. Then, the uncertainty vector540

ξ = ξ̄ + ζ ∈ R3 considers variations ζ(t) = [ζ1(t), ζ2(t), ζ3(t)]T ∈ R3 in the

nominal velocity states ξ̄ = [x4, x5, x6]T ∈ R3 of the OMR, as is observed in

Fig. 3. The disturbance vector ζ(t) is proposed at each time instant t as a

uniformly distributed random number vector in the interval [ζmin, ζmax], which

will represent Gaussian noises in the nominal velocity states. It is important to545

point out that the same disturbance vector ζ(t) is included in the closed-loop

control simulations with the gains obtained from RTACG and N-RTACG to

28



present a fair comparative result.

The robustness analysis in simulation involves the quantification of the per-

formance function, the sensitivity of the control performance index under vari-550

ations in the disturbance ζ of the linear and angular velocities of the OMR,

and the Root Mean Square (RMS) value of the velocities in the OMR. Three

different uncertainties in the velocity signals are incorporated into the closed-

loop system to analyze their effects. In the first test, the disturbance vector ζ is

reduced to zero in the uncertainty vector ξ, i.e., there is no noise in the velocity555

signals of the OMR (ξ = ξ̄). The i− th disturbance is randomly incremented in

the interval ζi(t) ∈ [−5E−5, 5E−5] and ζi(t) ∈ [−5E−3, 5E−3] for the second

and the third test, to simulate unknown uncertainties in the velocity signals of

the closed-loop system.

+

+
+

_

Figure 3: Schematic representation of the closed-loop system of the OMR with the task-space

PD controller and the uncertainties ζ(t).

The performance function value J̄ and its terms are displayed in Table 6. The560

first column includes the minimum and maximum variations in the disturbance

vector ζ. The second column shows the performance function J̄ evaluated both

with the robust gains p∗r obtained by the RTACG as well as with the non-

robust gains p∗ given by N-RTACG. The terms of the performance function J̄

given by the linear/angular position error Ĵ1, the energy consumption Ĵ2, and565

the sensitivities J̃1,j of position error concerning the j − th velocities xj of the

OMR, are presented in the rest of the columns. The boldface numbers indicate
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the lowest value (the best) between both approaches. It is observed that the use

of the robust gains p∗r significantly reduces the overall performance function J̄

concerning the non-robust ones (see the second column of Table 6).570

Besides, it is important to note that the proposed RTACG minimizes the

sensitivities of the position errors, as is shown in the last three columns of Table

6. The decrement of such sensitivities impacts the maximum variation of the

performance function Ĵ1 (position errors) under the effect of uncertainties in the

velocity signals. With the increment of uncertainties, the robust design p∗r can575

maintain the position error Ĵ1 into the interval [1.58E− 7, 2.75E− 6], while the

non-robust design can maintain it into the interval [1.85E − 7, 3.30E − 5] (see

third column in Table 6). The reduction in the position error Ĵ1, provided by

the robust control gains p∗r with respect to those given by the non-robust one

p∗, is around 17.08%, 16.98%, and 1100%, when the disturbances are ζi(t) = 0,580

ζi(t) ∈ [−5E − 5, 5E − 5], and ζi(t) ∈ [−5E − 3, 5E − 3], respectively. This

indicates that the proposed RTACG finds gains that make the linear and angular

position errors as insensible as possible to variations in the velocity signals.

Table 6: Performance function value in the simulation results with the obtained gains by using

the RTACG and the N-RTACG under uncertainty variations.

R
T

A
C

G

ζ J̄(p∗r) Ĵ1(p∗r) Ĵ2(p∗r) J̃1,1(p∗r) J̃1,2(p∗r) J̃1,3(p∗r)

0 8.5796E− 3 1.58E− 7 1.7155E − 1 6.39E− 23 4.76E− 23 4.76E− 23

[−5E − 5, 5E − 5] 0.2623 1.59E− 7 1.7360E− 1 1.25E− 17 1.26E− 17 1.78E− 19

[−5E − 3, 5E − 3] 2538.43 2.75E− 6 1.8258E1 1.25E− 13 1.26E− 13 1.78E− 15

N
-R

T
A

C
G ζ J̄(p∗) Ĵ1(p∗) Ĵ2(p∗) J̃1,1(p∗) J̃1,2(p∗) J̃1,3(p∗)

0 4.4723 1.85E − 7 1.7152E− 1 1.48E − 16 1.48E − 16 1.48E − 16

[−5E − 5, 5E − 5] 79.1012 1.89E − 7 1.9219E − 1 1.74E − 16 7.57E − 15 1.58E − 16

[−5E − 3, 5E − 3] 2.901E6 3.30E − 5 2.0450E2 7.61E − 11 1.37E − 10 7.59E − 11

The sensitivities of the control performance index, related to the change

rate of the sum of the squared position errors L̂1(t) concerning the velocities,585

are displayed in Fig. 4. They can be observed under the effects of different
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disturbance vector ζ. This visually confirms that the RTACG obtains control

gains that significantly reduce the sensitivities of the position errors to the

velocities changes (∂L̂1/∂xi ∀ i = 4, 5, 6). So, the gains obtained by the proposed

RTACG significantly reduce the position error sensitivities in such a way that590

the closed-loop performance of the controller is better than the N-RTACG when

uncertainties arise.
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Figure 4: Sensitivity of the position error with respect to velocities incorporating different

disturbances ζ by using RTACG and N-RTACG in the closed-loop system. a) ζ = 0. b)

ζ = [−5E − 5, 5E − 5]. c) ζ = [−5E − 3, 5E − 3].

On the other hand, the RMS values of the errors in the OMR velocity ė, with

the three different uncertainties in the velocity signals, are exhibited in Table
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7. The first column relates the three different uncertainties introduced in the595

closed-loop system. The second to fourth column presents the RMS value of the

Cartesian velocity errors of the OMR. The fifth column provides the sum of the

RMS values given in the second to the fourth column. The last column V ar%

represents the percentage of change between the RMS velocity error when ζ = 0

and the RMS velocity error with uncertainties. The boldface number indicates600

the lowest value (the best) between both approaches. In the test where there

are not disturbances ζ = 0 ∈ R3 (ξ = ξ̄), the RMS values in the velocity

errors of the closed-loop system are similar in both tuning approaches (see the

fifth column of Table 7). Nevertheless, the robust gains can reduce the velocity

variation around 313% and 146% with the disturbances ζi(t) ∈ [−5E−5, 5E−5]605

and ζi(t) ∈ [−5E−3, 5E−3], respectively, when compared with the non-robust

gains. Hence, the robust gains compensate better for the sudden changes in the

velocity error given by disturbances.

Table 7: RMS values for the simulation results of the OMR velocity error with the controller

gains obtained by the RTACG and the N-RTACG under different uncertainties.

R
T

A
C

G

ζ RMS(ė1) [m/s] RMS(ė2) [m/s] RMS(ė3) [rad/s]
∑3
i=1RMS(ėi) V ar%

0 8.511E − 5 7.083E − 5 1.807E − 5 1.740E − 4 0.0

[−5E − 5, 5E − 5] 9.484E − 5 8.211E − 5 5.848E − 5 2.354E− 4 35.3

[−5E − 3, 5E − 3] 4.072E − 3 4.072E − 3 5.614E − 3 1.376E− 2 7806.1

N
-R

T
A

C
G ζ RMS(ė1) [m/s] RMS(ė2) [m/s] RMS(ė3) [rad/s]

∑3
i=1RMS(ėi) V ar%

0 8.402E − 5 7.039E − 5 1.807E − 5 1.725E− 4 0.0

[−5E − 5, 5E − 5] 9.103E − 5 2.754E − 4 5.732E − 5 4.238E − 4 145.7

[−5E − 3, 5E − 3] 3.441E − 3 2.445E − 2 5.489E − 3 3.338E − 2 19250.5

Based on the previous discussion, it is confirmed that the RTACG can pro-

vide controller gains that efficiently handle the uncertainties in the system. In610

this manner, the control performance index of the closed-loop system can toler-

ate more uncertainty variations without greatly degrading its quality.
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4.3. Robustness analysis for the RTACG in a real environment

In this subsection, the experimental results of the gains obtained by the

proposed RTACG are validated through a comparative empirical analysis. This615

analysis consists of implementing the gains obtained by the RTACG and the

N-RTACG (see Table 5) in a laboratory OMR prototype (real-time experimen-

tation) and statistically evaluating the controller performance under the effect of

different uncertainties included in the velocity signals. It is important to point

out that the different disturbance vector ζ(t) in a specific interval is included in620

the closed-loop control real-time experimentation with the gains obtained from

RTACG and N-RTACG, i.e., at each experimentation different disturbance vec-

tor is considered at each time. For that reason, the descriptive and inferential

statistical analysis of thirty independent executions of the closed-loop system

for each approach is fulfilled to provide a formal conclusion related to the effec-625

tiveness of the RTACG in the trajectory tracking of the OMR under uncertainty

variations in a real environment.

The schematic diagram of the closed-loop system for the OMR prototype is

shown in Fig. 5. The OMR includes a motherboard mini-ITX GA-D425TUD

with the intelr processor AtomTM D525, 4 GB of RAM and 250 GB hard disk,630

where the control system and the position of the OMR, given by the odometry

system [74], are programmed in the Simulinkr software. The Sensoray 626 PCI

board provides the data acquisition of the motor position and the out sampling

signals (related to the control signal). Three advanced motion controls, 12A8

series analog servo drives, amplify the control signals to drive the three brushed635

DC motors of the OMR. External DC power sources supply the required voltage

to the electrical components in the OMR.
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Figure 5: Schematic diagram of the closed-loop system for the experimental OMR prototype.

In the real-time experimentation, uniformly distributed random disturbances

ζ(t) ∈ R3 are programmed and incorporated in the velocity signals. The uncer-

tainties are included in the OMR velocity, as is observed in Fig. 5. The sampling640

time in the experiments is 5ms. Three tests are considered. The first one does

not include disturbances (ζ = 0) and only considers those presented in the real

environment, which are unknown. The last two tests contemplate two different

intervals of disturbances ζ(t) ∈ [−11E − 5, 11E5] and ζ(t) ∈ [−1E − 3, 1E3],

respectively. Each test consists of carrying out thirty independent executions645

of the closed-loop system with the gains obtained by the RTACG and the N-

RTACG to obtain enough experimental evidence to perform a statistical study.

Descriptive and inferential statistics [73] are used to make general conclusions

about the performance of the RTACG concerning N-RTACG under the effect

of different uncertainties in the real environment related to the three tests pre-650

viously commented. The statistics sample is related to the position error Ĵ1

because the RTACG, for the particular study case, makes the position error as

insensible as possible to the velocity uncertainties for the real environment.

Table 8 shows the descriptive statistics of the thirty executions. The second

column indicates the mean value of the samples, the third one the standard655

deviation, and the last two columns represent the minimum and maximum val-
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ues. The boldface number indicates the lowest value (the best) between both

approaches. The results indicate that the controller gains obtained by the pro-

posed RTACG can reduce the position error under the effect of uncertainties.

Nevertheless, if the disturbance ζ is set to zero, the control performance in the660

position error is worse than the reported in the N-RTACG. Besides, the stan-

dard deviation presented in the third column of Table 8 indicates that, through

the thirty executions of the controller in the real OMR prototype, the position

errors are closer to the corresponding average than the ones in the N-RTACG.

This indicates that the RTACG gives a more consistent control performance.665

Table 8: Descriptive statistics of the thirty real-time executions of the controller with the

gains p∗r and p∗ obtained by RTACG and N-RTACG, respectively.

R
T

A
C

G

ζ mean(Ĵ1(p∗r)) σ(Ĵ1(p∗r)) Min(Ĵ1(p∗r)) Max(Ĵ1(p∗r))

0 7.709891E − 4 1.880423E− 6 7.675822E − 4 7.736226E − 4

[−11E − 5, 11E − 5] 7.701144E− 4 8.311074E− 7 7.680850E− 4 7.715172E− 4

[−1E − 3, 1E − 3] 5.045223E− 3 2.165748E− 5 5.006271E− 3 5.112541E− 3

N
-R

T
A

C
G ζ mean(Ĵ1(p∗)) σ(Ĵ1(p∗)) Min(Ĵ1(p∗)) Max(Ĵ1(p∗))

0 7.638518E− 4 2.716012E − 6 7.602548E− 4 7.705609E− 4

[−11E − 5, 11E − 5] 7.738168E − 4 1.877205E − 6 7.708005E − 4 7.785132E − 4

[−1E − 3, 1E − 3] 7.037825E − 3 4.050501E − 5 6.986586E − 3 7.143789E − 3

The results presented in Table 8 only describe the thirty samples. To make

general conclusions about the performance of the RTACG, a pairwise compar-

ison of the samples obtained by the RTACG and N-RTACG is perfomed using

the Wilcoxon signed-rank nonparametric test. Those results are presented in

Table 9, where the first column indicates the uncertainty variations, the last col-670

umn represents the p-value, the third and the fourth columns are the rank-sums

R+ and R−, respectively. For the nonparametric test, the two-sided alternative

hypothesis is selected, which means that the median of the results given by the

proposed RTACG is different from the one given by N-RTACG. The alternative

hypothesis is confirmed when the p-value is less than the significance level α.675
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The winner (the best performance) in the comparison is chosen based on the

rank-sums R+ (meaning that the first tuning approach outperformed the second

one) and R− (meaning that the second tuning approach outperformed the first

one). In this case, the significance level is chosen as α = 0.05. On the contrary,

when the null hypothesis is confirmed, i.e., when the p-value is larger than the680

significance level, then non-conclusive results are obtained. In that case, there is

not enough information to guarantee that one approach outperforms the other.

Based on the results presented in Table 9, it is confirmed that, with confidence

around 95%, the controller with the gains obtained by the proposed RTACG

can efficiently compensate different uncertainties in OMR velocities compared685

to the non-robust approach (N-RTACG). On the other hand, it is also confirmed

that, with confidence around 95%, the controller with the gains acquired by the

N-RTACG is the aptest one when there are no disturbances (ζ = 0).

Table 9: Wilcoxon signed-rank sum test of the thirty real-time executions of the controller

with the RTACG and N-RTACG.

ζ Comparison R+ R− p− value

0 RTACG vs N−RTACG 0 465 1.862E − 9

[−11E − 5, 11E − 5] RTACG vs N-RTACG 465 0 1.862E − 9

[−1E − 3, 1E − 3] RTACG vs N-RTACG 465 0 1.862E − 9

The evolution of the control performance index, related to the sum of the

squared position errors L1(t) through the time, is illustrated in Fig. 8 with690

the three different disturbances ζ. It is observed that the control performance

index L1(t) in the RTACG presents a uniform amplitude through the time with

a lower value of peak to peak amplitude than the N-RTACG. In particular, the

maximum amplitude of such errors in the RTACG is 2.229E − 5, 2.598E − 5,

and 4.207E − 4 with the chosen uncertainties. While in the N-RTACG, the695

maximum amplitude is 3.672E − 5, 4.367E − 5, and 7.358E − 4. Reductions in

the position error of around 64.7%, 68.1%, and 74.9% are presented using the

gains obtained by the proposed RTACG. This is attributed to the minimization
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of the sensitive in the control performance index (∂L̂1(t)/∂xi ∀i = 4, 5, 6) given

in the RTACG, which reduces the negative effects of the uncertainties.700

The trajectory tracking in the Xw−Yw Cartesian plane and in the φw space

are shown in Fig. 6 and Fig. 7, respectively. Those figures visualize the behavior

of the real OMR prototype with the controller gains obtained by RTACG and

N-RTACG under the three different disturbances ζ. It is important to highlight

that, although both figures have a similar trajectory tracking using the gains of705

both tuning approaches, the control performance index L̂1(t) in the proposed

RTACG presents a remarkable reduction around of [64.7%, 74.9%], and also,

with a more uniform variation concerning the N-RTACG (see Fig. 8).
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Figure 6: Experimental results of the OMR behavior in the trajectory tracking under different

disturbances ζ using the obtained gains by the RTACG.
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Figure 7: Experimental results of the OMR behavior in the trajectory tracking under different

disturbances ζ using the obtained gains by the N-RTACG.
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Figure 8: Experimental results of the Ĵ1(t) function through the time with different distur-

bances ζ.

5. Conclusions

This paper proposes the Robust Tuning Approach for Controller Gains710

(RTACG) as an offline nonlinear dynamic optimization problem. The self-

adaptative DE is used to solve the RTACG and provides a competitive and

reliable performance without requiring an exhaustive algorithm parameter tun-

ing.

The main advantages of the proposal are: i) the obtained controller gains715
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produce control performance indexes as insensible as possible to uncertainty

variations without knowing the uncertainty variation bounds, and ii) it is not

required the careful selection of the controller gain bounds to achieve real exper-

imental results (laboratory tests). Those advantages can be useful for practical

purposes.720

The proposal is applied to the task-space PD controller of an Omnidirec-

tional Mobile Robot, where the position error, the energy consumption, and

the sensitivity of the position error concerning the velocity variations, are min-

imized. The simulation and experimental results show that with the control

gains obtained by the proposed RTACG, the position errors are less sensitive to725

the effects of velocity variations (uncertainties). Hence, the closed-loop system

performance is significantly improved concerning a non-robust tuning approach.

In the results of the proposed RTACG compared with a non-robust tuning

approach, simulation results indicate that the improvement is around 17.08%,

16.98%, and 1100% using different magnitudes of uncertainties. Besides, the730

inferential statistics in the experimental results confirm that, with the confidence

of 95%, the proposed RTACG presents a better closed-loop system performance

under the effects of different uncertainties. In particular, reductions around

64.7%, 68.1%, and 74.9% in the position errors are attained in the experimental

results with different magnitudes of uncertainties.735
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