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Abstract

Event-triggered control is a sampling strategy that updates the control value only

when some events related to the state of the system occurs. It therefore relaxes the

periodicity of computations. This paper deals with the development of a nonlin-

ear event-triggered control for the stabilization of a (3,0) mobile robot. Firstly, the

existence of a stabilizing control law is proven and a Control Lyapunov Function

(CLF) relative to the desired equilibrium (i.e. desired position) is obtained. Then,

the construction of an event function and a feedback function is carried out. The

event function is dependent on the time derivative of the CLF and the feedback

function results from the extension of Sontag’s general formula to event-triggered

stabilization, which ensures asymptotic stability, smoothness everywhere and con-

tinuity at the equilibrium. Experimental results validate the theoretical analysis

where a comparison with a computed torque control law is performed. Hence, the

proposed scheme reduces the number of control updates, which implies a reduction

of processor load without deteriorating the closed-loop performance. To the best of

the authors’ knowledge, this is the first time that such strategy is experimentally

tested on a completely autonomous (3,0) mobile robot.
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1. Introduction

1.1. Motivations and Background

In recent years, the advances in Very Large Scale Integration (VLSI) in an inte-

grated circuit have allowed the development of low-cost, low-power, small-sized com-

putational elements. As a consequence, an increasing number of mechatronic systems

includes embedded computers, which interact with the physical world through the

use of sensors and actuators in order to exchange information. The integration of

computation with physical processes results in Cyber-Physical Systems (CPS) [1]

where the goal of this integration is to develop engineered systems that improves

current systems with respect to autonomy, functionality, energy efficiency, usability,

safety, and reliability. Unmanned Ground Vehicles (UGVs) include an important

class of CPS where the intelligent interactions with the world, represents a challenge

that needs to be taken into account [2–4].

Among UGVs, the holonomic omnidirectional vehicle (ODV) also known as (3,0)

mobile robot, has caused great interest because of its high maneuverability [5–7].

Since this class of robot can execute holonomic movements, i.e. it can change its

direction of movement without changing its orientation and without dramatically

decreasing its speed, this robot is ideal in diverse applications such as security, au-

tomated transportation and logistics [8, 9] or even in the field of outdoor and rough

terrain applications [10, 11].

Researches in control and robotics have proposed linear and nonlinear control ap-

proaches related to the stabilization and trajectory tracking problem of (3,0) mobile

robots. The standard robot motion control have been designed either in a decentral-

ized or in a centralized fashion [12, 13]. Decentralized control, also known as cascade
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control, is based on the derived kinematic model [14], where the angular velocities of

the actuators are the control inputs; and linear and angular velocities of the robots

are the outputs. Then, each actuator is controlled separately, typically using a local

velocity controller (see [15, 16] and references therein). On the other hand, central-

ized control is based on the dynamic robot model, similar to that proposed in the

present paper, which is nonlinear and coupled. In this case, linear and nonlinear

control laws have been developed using different approaches, e.g. feedback lineariza-

tion (computed torque in robotics) [17], adaptive control [18], backstepping control

[19], sliding mode control [20], LPV-based control [21], knowledge-based control [22],

nonlinear model predictive control (NMPC) [23], GPI based observer control [24]

and fuzzy control [25] where remarkable techniques can be used in order to provide

robustness with respect to parameter uncertainties [26, 27]. This list is of course far

from being exhaustive and within the previous mentioned approaches, the control

design explicitly considers some coupling terms from the dynamics of the system.

Therefore, it is expected to exhibit a better performance for high speed and acceler-

ation profiles [28].

It is well known that when a continuous-time control law is implemented using a

digital computer, the closed-loop system may not have the same stability properties

as the system with a true continuous controller, due to delay and digitization errors

[29]. Actually, all previously listed control laws were designed in a continuous-time

framework and their implementation were carried out under embedded computers in

the time-triggered framework, where the sampling time is constant. This procedure

is called emulation and consists of implementing a continuous-time control algorithm

with a constant and sufficiently small periodic sampling period [30]. Nevertheless,

this procedure can be constrained by hardware (processor performance, cache hit

percentage, memory latency, etc.) such that reducing the sampling period, to a level
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that guarantees acceptable closed-loop performance, may be impossible in practice.

On the other hand, control techniques based on the discrete-time design have

been widely studied lately, motivated by the remarkable technological advances in

digital electronics [31]. In discrete-time control design, the discretization of the

continuous-time plant model is made and then, the design of the controller based

on the discrete plant model is carried out. The main advantage of the discrete-

time control is that it does not require fast sampling rate and the designed controller

always stabilizes the discrete plant [32]. The discrete-time control of linear systems is

well understood and it is now a mature area [33]. Although efforts have been focused

to extend them to nonlinear systems, the main drawback is to analytically obtain

nonlinear exact discrete-time models, since it requires solving an explicit nonlinear

initial value problem [30]. Therefore, the discrete-time control design requieres the

approximate discrete-time model [34] to stabilize the approximate model of the plant

but the discrete-time control could unstabilize the exact model. Then, the control

redesign using Lyapunov-based, ISS (Input-to-State-Stability) and neural networks

approaches are necessary in order to achieve the stabilization [35–37]. So far, much

effort has been devoted to nonlinear discrete-time control design, but the proposed

techniques remain complex for practical implementations.

In recent years, an interesting method known as Event-Based Control or Event-

Triggered Control proposes to relax the sampling sequence by some events related to

the state of the system. The idea arises in the context of Networked Control Systems

(NCS) where the insertion of communication networks in the feedback control loops

makes the analysis and synthesis of NCSs a challenge [38, 39]. Its main characteristic

is that an event can be activated according to the system’s dynamic behavior which

indicates whether the control law is computed and applied to the system or not.

Some works on event-based PID control have shown efficiency with a reduction of
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control function calls [40–42]. Typical event-detection mechanisms are functions of

the variation of the state or the output of the system, as is reported in [43–45].

Actually, the main difference among control strategies is the event function. In

[46], the event function is related to the variation of the Lyapunov function and

consequently to the state variable. The existence of a Lipschitz stabilizing control

law, an Input to State Stable Control Lyapunov Function (ISS-CLF) and a Control

Lyapunov Function (CLF) were proposed as event functions in [47, 48] and [49,

50], respectively. In [51], the event-triggered approach is stated for the estimation

techniques of power systems based on Western Electric Rules and tracking state

estimator.

Even though the benefits of event-based control have shown good results, few results

in the framework of Unmanned Ground Vehicles (UGVs) have been reported. For

instance, in [52] an event-based PID controller is proposed for velocity regulation.

In [53] a distributed control algorithm based on event-triggered communications has

been designed and implemented to bring the robots into the desired formation. In

both works linear event-triggered controllers are proposed and the kinematic model

was used for the control design, unlike in the present work. Furthermore, the control

objectives are different.

1.2. Contributions

In the present work, an event-triggered nonlinear control law is proposed for the

pose regulation of a (3,0) mobile robot. The control law is based on the dynamic

robot model which can be written as an affine in the control dynamical system,

such as is detailed in section 2. This section also presents an overview of the event-

triggered strategy for the stabilization of nonlinear systems, proposed by one of

the authors of this paper in [49]. Lemma 3.1 in section 3 is the first contribution
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of this work. It presents the existence of a stabilizing control law and a Control

Lyapunov Function (CLF) relative to the equilibrium xe = 0. A version of a CLF

relative to the equilibrium xe �= 0, where xe is the desired pose, is given in remark

3.4. Remark 3.2 discloses that although the stabilizing control law presented in

Lemma 3.1 can asymptotically stabilize the (3,0) mobile robot, the existence of this

control law and the corresponding CLF is used here for the construction of the

event function and the feedback function, such as is stated in Corollary 3.3. It is

worth mentioning, that the event function is obtained from the time derivative of

the CLF. Furthermore, the feedback function results from the extension of Sontag’s

general formula to event-triggered stabilization ensuring that the closed-loop system

is asymptotically stable, smooth everywhere and continuous at the equilibrium. As

was mentioned in [54], Sontag’s formula possess robustness to static and dynamic

input uncertainties. As a consequence, the proposed technique solves, implicitly, the

problem of robust stabilization of a (3,0) mobile robot, which represents a second

contribution. Finally, in section 4, the closed-loop system is carried out in real-

time. It shows that such an event-triggered strategy reduces the number of control

updates by 27.73 % and the power consumption, w.r.t a continuous-time control law

(computed torque with sampling time period fixed to 5 ms) without compromising

the system’s performance. To the best of the authors’ knowledge, this is the first

time that such a strategy is experimentally tested on a completely autonomous (3,0)

mobile robot. This final point, represents the third and main contribution of this

work.

2. Mathematical Background

In this section the dynamic model of the (3,0) mobile robot is briefly introduced.

Furthermore, some aspects of nonlinear systems stabilization by means of an event-
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triggered control are reviewed [49].

2.1. Dynamic model of the (3,0) mobile robot

According to the classification established in [6, 28] the (3,0) mobile robot is

considered holonomic with three omnidirectional wheels providing three degrees of

mobility and zero degree of steerability degree.

An isometric view of the mobile robot is shown in Fig. 1a. Two orthogonal right-

hand coordinate systems are considered: an inertial coordinate system {w} and a

moving coordinate system {m} with origin at the mass center of the robot. In Fig.

1b a photo of the mobile robot is given.

Let x = (x1 x2 x3 x4 x5 x6)
T = (xw yw φw ẋw ẏw φ̇w)

T denote the state vector

corresponding to the linear and angular position and velocity of the omnidirectional

mobile robot expressed in the inertial coordinate system and u = (u1 u2 u3)
T be the

input torque vector generated by the wheels and following the procedure described

in [17], then the dynamic model in the state variable representation is given by

(1), where angles described between the axis Ym and the axes of each wheel are

represented by δ1 and δ3, m̄ and Iz are the mass and the inertia of the mobile robot;

r and J are the radius and the inertia of the wheels and L is the distance between

the mass center of the mobile robot and the wheels.

ẋ = f(x) + g(x)u (1)

where:

f(x) =
(

x4 x5 x6 −α1x6x5 −α1x4x6 0
)T
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g(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

0 0 0

−α2β2 2α2 sin x3 −α2β1

α2β4 −2α2 cosx3 α2β3

α3 α3 α3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α1 =
3J

2mr2+3J
; β1 =

√
3 cos x3 + sin x3

α2 =
r

2mr2+3J
; β2 = sin x3 −

√
3 cos x3

α3 =
Lr

3JL2+Izr2
; β3 = cosx3 −

√
3 sin x3

; β4 = cosx3 +
√
3 sin x3

2.2. Event-triggered control

The study in this paper focuses on dynamical systems of the form

ẋ = f(x) + g(x)u (2)

where x ∈ X ⊂ R
n, u ∈ U ⊂ R

p, f and g are smooth functions with f vanishing at

the origin. For the sake of simplicity, in this paper only the case of null stabilization

is considered. If the system admits an asymptotic stabilizing feedback k : X → U
then there is a Control Lyapunov Function (CLF) V : X → R, that is a smooth

positive definite function such that:

V̇ =
∂V

∂x
f(x) +

∂V

∂x
g(x)k(x) (3)

It is worth noting that if k is assumed to be smooth, then V exists and it is

smooth. In the present work only the smoothness of V is required which is less

restrictive.

8



The event-triggered control framework requires two functions:

• Event function ē : X × X → R that indicates if the control signal needs to

be updated (ē ≤ 0) or not (ē > 0). Event function ē takes the current state

x as input and a memory m of the vector x for the last time that ē became

negative.

• Feedback function k : X → U , which is computed if the event function is

activated.

Definition 2.1. [49] An event-triggered feedback (k, ē) is said to be a semi-uniformly

Minimal inter-Sampling Interval (MSI) if for all δ > 0 and all x0 in the ball of radius

δ centered at the origin B(δ), the time between two successive events can be lower

bounded by a τ > 0.

It is known that for a nonlinear system of the form (2) with a semi-uniformly

MSI event-triggered control (ē, k), the solution of equation (2) with initial conditions

x0 ∈ X in the time t = 0, is defined for all positive t as the solution of the differential

system:

ẋ = f(x) + g(x)k(m) (4)⎧⎨
⎩ m = x if ē(x,m) ≤ 0, x �= 0

m = 0 elsewhere
(5)

with x(0) := x0 and m(0) = x(0)

Theorem 2.2 (Event-triggered universal formula [49]). If there exists a CLF for the

system (2), then the event-based feedback (ē, k) defined below is semiuniformly MSI,
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smooth on X\{0}, and such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)k(m) < 0, x ∈ X\{0} (6)

where m is defined in (5) and k is:

ki(x) := −bi(x)δi(x)γ(x) (7)

ē(x,m) := −a(x)− b(x)k(m)− σ
√

a(x)2 + θ̄(x)b(x)Δ(x)b(x)T

with

• i ∈ {1, 2, . . . , p},

• a(x) := ∂V
∂x
f(x) and b(x) := ∂V

∂x
g(x),

• x → Δ(x) := diag(δ1(x), δ2(x), . . . , δp(x)) is a smooth function of X\{0} to

R
p×p, positive definite on: S := {x ∈ X |‖b(x)‖ �= 0},

• x → θ̄(x) is a smooth positive function of X to R, such that θ̄(x)‖Δ(x)‖ van-

ishes at the origin and ensuring on S\{0} the inequality a(x)2+θ̄(x)b(x)Δ(x)b(x)T >

0,

• σ is a control parameter that takes values in [0, 1),

• γ : X → R is defined by:

γ(x) :=

⎧⎨
⎩

a(x)+
√

a(x)2+θ̄(x)b(x)Δ(x)b(x)T

b(x)Δ(x)b(x)T
if x ∈ S

0 if x /∈ S
(8)

Proof. The proof is presented in [49].
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3. Design of control strategy

This section describes the design of an event-triggered control for the stabilization

of the (3,0) mobile robot. For this purpose, a CLF is first obtained to the nonlinear

system (1). The objective consists of finding the pair u = k̄(x) and V such that the

following asymptotic condition is fulfilled:

lim
t→∞

x(t) = xe = 0 and
∂V

∂x
f(x) +

∂V

∂x
g(x)k̄(x) < 0 (9)

where 0 ∈ R
6 is the origin of the space state. In the case that the desired equilibrium

(robot’s desired position) is xe �= 0, the variable change z = x−xe must be considered

for the stabilizing feedback and the asymptotic condition becomes:

lim
t→∞

z(t) = 0 and
∂V

∂z
f(z) +

∂V

∂z
g(z)k̄(z) < 0 (10)

Once the existence of a stabilizing control u = k̄(x) (respectively, u = k̄(z)) and a

CLF V (x) (respectively, V (z)) is proven, the event-triggered control will be devel-

oped.

With the above requirements, our first result is the following:

Lemma 3.1. Consider the function V : R6 → R defined by:

V (x)=P1x
2
1 + P2x

2
2 + P3x

2
3 + P4x

2
4 + P5x

2
5

+P6x
2
6 + 2P7x1x4 + 2P8x2x5 + 2P9x3x6 (11)

with Pi+1 =
√
�i+1�i+4 + 2

√
�3i+1/εi+1, Pi+4 =

√
�i+4/εi+1 +

√
4�

i+1
/ε3i+1, Pi+7 =√

�i+1/εi+1, where εi+1, �i+1, �i+4 ∈ R
+ ∀ i = 0, 1, 2. Then, (11) is a CLF for the

system (1) relative to the equilibrium state xe = 0 ∈ R6 with the stabilizing control
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u = k̄(x) ∈ R
3 defined by:

k̄1=
1

12
β2

ε1
α2

P7x1 − 1

6

ε3
α3

P6x6 − 1

2

J

r
β2x5x6 − 1

2

J

r
β4x4x6 − 1

6

ε3
α3

P9x3

+
1

12
β2

ε1
α2

P4x4 − 1

12
β4

ε2
α2

P8x2 − 1

12
β4

ε2
α2

P5x5 (12)

k̄2=
J

r
x4x6 cosx3 − 1

6

ε3
α3

P6x6 − 1

6

ε3
α3

P9x3 +
J

r
x5x6 sin x3 +

1

6

ε2
α2

P8x2 cosx3

+
1

6

ε2
α2

P5x5 cosx3 − 1

6

ε1
α2

P7x1 sin x3 − 1

6

ε1
α2

P4x4 sin x3 (13)

k̄3=
1

12
β1

ε1
α2

P7x1 − 1

6

ε3
α3

P6x6 − 1

2

J

r
β1x5x6 − 1

2

J

r
β3x4x6 − 1

6

ε3
α3

P9x3

+
1

12
β1

ε1
α2

P4x4 − 1

12
β3

ε2
α2

P8x2 − 1

12
β3

ε2
α2

P5x5 (14)

Proof. It is clear that Lyapunov function V is smooth, positive definite and proper

for Pj ∈ R
+ ∀ j = 1, 2, ..., 9. This Lyapunov function can be rewritten as follows:
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V (x) = P7

√
ε1
√

2P7x
2
1 + P7

(√
2P7 −

√
P7√

�1

)
x2
4

+P7

(
4
√
P7ε1x1 +

4

√
P7

�1
x4

)2

− P7

√
ε1
√

P7x
2
1

+P8

√
ε2
√
2P8x

2
1 + P8

(√
2P8 −

√
P8√

�2

)
x2
4

+P8

(
4
√
P8ε2x1 +

4

√
P8

�2
x4

)2

− P8

√
ε2
√

P8x
2
1

+P9

√
ε3
√
2P9x

2
1 + P9

(√
2P9 −

√
P9√

�3

)
x2
4

+P9

(
4
√
P9ε3x1 +

4

√
P9

�3
x4

)2

− P9

√
ε3
√

P9x
2
1 (15)

Then, evaluating the time derivative of V (x) along the trajectories of (1), one obtains

V̇ (x) = 2P1x1ẋ1 + 2P2x2ẋ2 + 2P3x3ẋ3 + 2P4x4ẋ4 + 2P5x5ẋ5 + 2P6x6ẋ6

+ 2P7ẋ1x4 + 2P7x1ẋ4 + 2P8ẋ2x5 + 2P8x2ẋ5 + 2P9ẋ3x6 + 2P9x3ẋ6

= (2P1x1 + 2P7x4) x4 + (2P2x2 + 2P8x5)x5 − (2P4x4 + 2P7x1)

(α2β1u3 + α1x5x6 + α2β2u1) + (2P5x5 + 2P8x2)

(α2β4u1 + α2β3u3 − α1x4x6) + (2P4x4 + 2P7x1) 2α2u2 sin x3

+ (2P3x3 + 2P9x6)x6 − (2P5x5 + 2P8x2) 2α2u2 cos x3

+ (2P6x6 + 2P9x3) (α3 (u1 + u2 + u3))

(16)

Including the control law (12)-(14) in (16), the time derivative of the Lyapunov

function becomes:
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V̇ (x) = −ε1P
2
7 x

2
1 − ε2P

2
8 x

2
2 − ε3P

2
9 x

2
3 +

(
2P7 − ε1P

2
4

)
x2
4

+ (2P1 − 2ε1P4P7)x1x4 + (2P2 − 2ε2P5P8) x2x5

+
(
2P8 − ε2P

2
5

)
x2
5 +

(
2P9 − ε3P

2
6

)
x2
6 + (2P3 − 2ε3P6P9)x3x6

= −�1x
2
1 − �2x

2
2 − �3x

2
3 − �4x

2
4 − �5x

2
5 − �6x

2
6 < 0 ∀ x �= 0

(17)

Hence, the nonlinear system (1) with the control system (12)-(14) is asymptotically

stable with a domain of attraction equal to R
6\2nπ ∀ n = 0, 1, ...,∞. Accordingly,

V is a CLF for (1) relative to the equilibrium state xe = 0.

Remark 3.2. Note that Lemma 3.1 shows the existence of a stabilizing control law

and a CLF. However, the control law (12)-(14) is not used anymore. Instead, the

event-based feedback designed in the next subsection is applied to the system. Actually,

the event function and the event-based feedback function depends on the CLF (11).

3.1. Event-triggered control for (3,0) mobile robot

Given the CLF (11) associated with the system (1), the event-triggered control

technique described in (2.2) can be applied and one can state the following result.

Corollary 3.3. Considering the dynamics of the (3,0) mobile robot defined in (1)

and the CLF given in (11), then, the event-triggered control u = k(m) defined in

(18) with the event ē(x,m) (19), asymptotically stabilizes the (3,0) mobile robot at

the origin. In addition, the control (u, ē) is semi-uniform MSI and smooth in R
6\{0}.

k(m) = −b(x)δ(x)γ(x) (18)

ē(x,m) = −a(x)− b(x)k(m)− σ
√
a(x)2 + θ̄(x)b(x)Δ(x)b(x)T (19)
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where a(x) ∈ R and b(x) = (b1 b2 b3) ∈ R1×3 are given by:

a(x) = 2P8x
2
5 + 2P9x

2
6 − 2α1P5x4x5x6 + 2P2x2x5

+2P3x3x6 − 2α1P4x4x5x6 + 2P1x1x4

−2α1P7x1x5x6 − 2α1P8x2x4x6 + 2P7x
2
4 (20)

b1 = 2α3P6x6 + 2α3P9x3 − 2α2β2P4x4 − 2α2β2P7x1

+2α2β4P5x5 + 2α2β4P8x2 (21)

b2 = 2α3P9x3 − 4α2P5x5 cosx3 − 4α2P8x2 cosx3

+4α2P4x4 sin x3 + 4α2P7x1 sin x3 + 2α3P6x6 (22)

b3 = 2α3P9x3 − 2α2β1P4x4 − 2α2β1P7x1

+2α2β3P5x5 + 2α2β3P8x2 + 2α3P6x6 (23)

The proof of Corollary 3.3 follows the one of Theorem 2.2. However, it is im-

portant to highlight the advantages and properties of the control law (18) and the

rationale behind the construction of the event function (19).

• First, the feedback (7) is based on the general formula for the stabilization of

nonlinear systems proposed by E. Sontag in [55] in the continuous framework.

In [49] is extended the results to the event-triggered framework and it is shown

that this control law is smooth everywhere and continuous at the origin.

• The problem of robust stabilization of nonlinear systems in the presence of

input uncertainties is of great importance in practical implementation. Sta-

bilizing control laws may not be robust to this type of uncertainty, especially

if cancellation of nonlinearities is used in the design, e.g. control laws based
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on feedback linealization as this one of the computed torque in robotics. As

was mentioned in [54], Sontag’s formula possess robustness to static and dy-

namic input uncertainties. As a consequence, the proposed technique solves,

implicitly, the problem of robust stabilization of a (3,0) mobile robot.

• There are no systematic techniques for finding CLFs for general nonlinear sys-

tems, but the proposed approach can be applied successfully to holonomic

omnidirectional vehicles i.e. (3,0) mobile robots, whose CLFs can be found.

• The rationale behind the construction of feedback (8) is the following [49]. In

the event function the term a(x)+b(x)k(m) is the time derivative of V , whereas

−
√

a(x)2 + θ̄(x)b(x)Δ(x)b(x)T is the value of V̇ if k(x) is used instead of k(m)

. Therefore, right after an event, the event function presents a positive value

(ē(x,m) = (1 − σ)
√
a(x)2 + θ̄(x)b(x)Δ(x)b(x)T > 0, σ ∈ [0, 1[) and remains

positive as long as V̇ ≤ σ
√
a(x)2 + θ̄(x)b(x)Δ(x)b(x)T . Events will be more

frequent with smaller σ. Then, σ results in a tuning parameter. The second

tuning parameter, of the control law, is the function Δ(x) that directly impacts

the performance of the control as well as the frequency of events.

Remark 3.4. Note that the control system is performed for null stabilization i.e

xe = x = 0. In the case that the equilibrium is xe �= 0, a variable change (z =

x− xe) must be considered for the stabilizing feedback and the CLF must be changed

to V (z) = P1z
2
1 + P2z

2
2 + P3z

2
3 + P4z

2
4 + P5z

2
5 + P6z

2
6 + 2P7z1z4 + 2P8z2z5 + 2P9z3z6.

4. Real-time experimentation

The aim of this section is to show the effectiveness of the proposed event-triggered

control for the stabilization of the (3,0) mobile robot, hence Real-time experiments

on the (3,0) mobile robot prototype (Fig. 1) are carried out.
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This mechatronic prototype was designed and developed using optimization tech-

niques in order to maximize the dexterity of the mobile robot by properly locating

the omnidirectional wheels [7]. The mobile robot includes a Mini-ITX GA-D425TUD

mother board with Intel Atom D525, an embedded data acquisition system ”Sen-

soray 626” and DC motor’s drivers ”Advanced Motion model 12A8” to compute

the control law and to interact with sensors and actuators. Two lead-acid battery

12V/12A supply the power to the hardware of the mobile robot. The control law

is programmed in Simulink program with Real-Time Windows Target for executing

simulink models with a real-time kernel in Windows. An odometry system [16] is

used to obtain the state vector x (position and velocity) at 200 Hz ( i.e. the sample

time is chosen as Δt = 5ms).

The event-triggered control strategy for the stabilization problem is represented

in the block diagram of Fig. 2. The solid lines within the cyber system, indi-

cate a continuous (periodic) information flow and the dashed lines denote that the

information flow is only transmitted when there is an event function. The odom-

etry system continuously calculates the state vector x. The state vector z is ob-

tained by using the state vector x, the desired position xd and the variable change

z = T (x) = x−xd. Based on the current state information zi and the last computed

control signal u = k(m) stored in memory, the event function can be computed. The

event function decides when to call the control function. The control function takes

into account the current state information zi as input argument. Whenever the con-

trol function receives a new state value zi, it updates the control law u = k(m) and

the new value of the control signal is returned and stored in the memory. Then, the

stored control signal value is used to change or to keep the PWM signals and more-

over to evaluate the next event-triggered function for detecting a new event. Thus,

the experiment consists in showing the performance of the mobile robot position by
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means of an event-triggered feedback, i.e. with the control law (18) together with

the event function (19). The motivation is to show the reduction of computation

load (arithmetic operation, data storage and transfer of information) with respect to

the time-triggered framework. Note that the saved computational resources (thanks

to an event-based approach) could be used to process other information within the

embedded system for instance, Inertia Measurement Unit (IMU), Global Positioning

System (GPS), laser sensors, video, etc.

The experimental results consider the initial condition of the mobile robot as the

origin, i.e., x(0) = (0 0 0 0 0 0)T . Four different positions in the Cartesian space

are considered as the desired positions that must be reached by the mobile robot in

sequential order. These positions are Q1 : x
d = (0 0.7 0.2 0 0 0)T , Q2 : x

d = (0.7 −
0.7 0.5 0 0 0)T , Q3 : x

d = (−0.7 − 0.7 1 0 0 0)T , Q4 : x
d = (0 0.7 1.2 0 0 0)T . These

positions must be reached at a maximum time of 30 s and then, the experimental

results will be carried out at a final time of tf = 120s.

In order to compare the control performance of the proposed event-triggered

control (ETC) and to evaluate its advantages, the computed torque control (CTC)

[17] is implemented. The technical specifications of the omnidirectional mobile robot

prototype are stated in Table I. The control parameters ε ∈ R3 and � ∈ R6 of

the ETC are proposed as follows: : �1 = �2 = 6.4431e3, �3 = �6 = 35.0237,

�4 = �5 = 35.0237, ε1 = ε2 = 6.20e − 4 and ε3 = 0.0999. Those parameters

consider large positive values of the Lyapunov function. The frequency of the events

is driven by σ, which is set to σ = 0.9. Furthermore, θ̄ = b(x)Δ(x)b(x)T − 2a(x) and

Δ(x) = diag(0.01, 0.01, 0.01) ∈ R
3×3.

The proportional and derivative gains of the CTC are established as: kp1 = 50,

kd1 = 5, kp2 = 100, kd2 = 170, kp3 = 590, kd3 = 10. It is important to note that the

selection of the CTC gains is based on having a similar closed-loop performance as

18



the obtained in the ETC.

In Fig. 3a the behavior of the (3,0) mobile robot in the plane Xw−Yw is shown for

both control strategies and in Fig. 3b-3d the linear position and the angular position

of the mobile robot are separately presented. In order to carry out an analysis of per-

formance of the closed-loop system, three different control performance indexes are

considered: the Integral Absolute Error (IAE), the Integral Time-weighted Absolute

Error (ITAE) and the Integral Squared Error (ISE). In Table II those performance

indexes are displayed for each degree of freedom d.o.f. (xw, yw, φw). It is clear that

both control approaches present a similar performance and the position error in the

experimental results converge to a value near to zero. In spite of the asynchronous

activation of the control system in the ETC, it does not deteriorate the closed loop

performance.

On the other hand, in Fig 4 the control signal behavior for both strategies are

presented. In the last column of Table II the total torque is evaluated. It is observed

that the ETC requires less applied torque to actuators (DC motors) than the CTC, in

spite of presenting similar closed-loop performance. As the applied torque is related

to the provided energy, the ETC requires less energy consumption to the actuators.

The Lyapunov function is presented in Fig. 5a where it is possible to observe

that it converges around the zero value when the system stabilizes at the desired

position and the same happens with the event function evolution shown in Fig. 5b.

Finally, Fig. 5c represents the event function activation flag, where ”1” indicates that

the control system is computed, updated and applied (ē ≤ 0) and ”0” represents

that the control system is taken from the previous computed control value stored

in memory (ē > 0). Note that with the CTC, which is based on time-triggered

control, the control signal should be computed at each sampling time Δt = 5ms,

hence 24, 000 updates of the control law is required for the previous experiment

19



with a final time of tf = 120s. Meanwhile, with the ETC only 18303 updates are

required due to the asynchronous activation of the event function (see Fig. 5c).

Considering the difference between the updates of the ETC and CTC, the proposed

control approach reduces by 23.73% the update of the control signal compared with

the CTC, which implies a decrease in arithmetic operations, data storage and transfer

of information. The decrease of three such factors reduces the energy required to

perform the updating. In spite of the asynchronous activation of the control signal

in the ETC, the stability of the closed-loop system is guaranteed. Moreover, the

computing time to evaluate the control law (18) is 7.84μs, meanwhile the computing

time required for evaluating the event-function is 6.35μs. Hence 1.49μs is reduced

for each inactivation of the event function activation flag. Therefore, with the ETC

the computational load is diminished around 8.48ms for the particular experiment.

5. Conclusion

In this paper, the development and implementation of a nonlinear event-triggered

feedback for the position stabilization of a (3,0) mobile robot is presented. Firstly,

using a stabilizing control, the existence of a smooth CLF for the dynamics of the

mobile robot is proven. Secondly, an event-triggered control is derived from the CLF

function by considering the universal formula for event-triggered stabilization of gen-

eral nonlinear systems affine in the control. The control law ensures, theoretically,

the asymptotic stability of the closed-loop system to the desired position. An experi-

mental prototype is used in order to validate the proposed strategy in real-time. The

experiments show that the event based controller significatively reduces the number

of times of control functions calls without deteriorating the closed-loop system per-

formance, which results in energy saving in arithmetic operations, data storage and

transfer of information; the decrease of the torque applied to the actuators and the
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reduction of the computational load. However, thanks to the asynchronous control,

the proposed approach allows the possibility of being implemented in embedded sys-

tems to operate with low power consumption. Outdoor real-time implementation

and tracking trajectories will be addressed in the future.
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[35] D. S. Laila, D. Nešić, Changing supply rates for input-output to state stable

discrete-time nonlinear systems with applications, Automatica 39 (5) (2003)

821 – 835.
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a) b)

Figure 1: Schematic diagram and photo of the (3,0) mobile robot.
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Figure 2: Schematic diagram of the event-triggered control system.
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a) Behavior of the (3,0) mobile robot in the plane Xw − Yw.
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Figure 3: Comparative behavior between the event-triggered control and the computed-torque
control in the stabilization problem of the (3,0) mobile robot. D.P.: Desired point (Q1, Q2, Q3,
Q4). E. R.: Experimental results.
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Figure 4: Comparative control performance between the event-triggered control and the computed-
torque control in the stabilization problem of the (3,0) mobile robot.
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Figure 5: Lyapunov function V , event function ē and activation flag for the event-triggered control
in the stabilization problem of the (3,0) mobile robot.
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Table I: Omnidirectional mobile robot specifications.

Parameter Description Value Units

δ1 Angle 1 π/6 rad
δ2 Angle 2 π/3 rad
J Wheel’s inertia 5.82E-4 kg·m2

Iz Mobile’s inertia 0.0127 kg·m2

m̄ Mass 11.83 kg
r Wheel’s radius 0.0625 m
L Wheel’s distance 0.287 m
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Table II: Comparative results of the Event-Trigger Control and Computed Torque Control.
Control IAE [m or rad] ITAE [m s or rad s] ISE [m2 or rad2]

∑

∀ t

(|u1(t)| + |u2(t)| + |u3(t)|) [Nm]

approach xw yw φw xw yw φw xw yw φw

ETC 7.47 10.36 5.93 462.48 558.66 333.50 4.86 7.87 2.01 47850.33
CTC 7.56 10.65 5.96 473.91 572.76 370.27 5.04 7.70 2.62 48044.85
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List of figure captions:

Figure 1: Schematic diagram and photo of the (3,0) mobile robot.

Figure 2: Schematic diagram of the event-triggered control system.

Figure 3: Comparative behavior between the event-triggered control and the

computed-torque control in the stabilization problem of the (3,0) mobile robot. D.P.:

Desired point (Q1, Q2, Q3, Q4). E. R.: Experimental results.

Figure 4: Comparative control performance between the event-triggered control

and the computed-torque control in the stabilization problem of the (3,0) mobile

robot.

Figure 5: Lyapunov function V , event function ē and activation flag for the event-

triggered control in the stabilization problem of the (3,0) mobile robot.
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