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Abstract

The presence of parametric uncertainties decreases the performance in con-

trolling dynamic systems such as the DC motor. In this work, an adaptive

control strategy is proposed to deal with parametric uncertainties in the

speed regulation task of the DC motor. This adaptive strategy is based

on a bio-inspired optimization approach, where an optimization problem is

stated and solved online by using a modification of the differential evolution

optimizer. This modification includes a mechanism that promotes the explo-

ration in the early generations and takes advantage of the exploitation power

of the DE/best class in the last generations of the algorithm to find suit-

able optimal control parameters to control the DC motor speed efficiently.

Comparative statistical analysis with other bio-inspired adaptive strategies

and with linear, adaptive and robust controllers shows the effectiveness of

the proposed bio-inspired adaptive control approach both in simulation and
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experimentation.
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1. Introduction

DC motors are used in a wide variety of applications. This fact is asso-15

ciated with their relatively low cost, high durability, and easy controllability

by varying its input. In industry, they are commonly used as the main actu-

ation devices in robotic arms [1], vehicles [2], machine tools [3] and others.

In most of those applications, high accuracy rates are required for the motor

tasks of tracking and regulation. In order to achieve this requirement, control20

systems aim to provide the best/desired motor dynamic behavior to perform

a determined action.

Along time, there have been proposed many control systems that afford

the best performance of motors under different conditions. For example, lin-

ear controllers are a kind of control systems that establish a linear relationship25

between the desired and current states of the motor. Linear controllers are

extensively used in industry because of their simplicity and good performance

[4]; nevertheless, all real-world systems are no-linear, and a linear control ap-

proach could not be enough to achieve the best performance, because the

plant dynamics are highly nonlinear or there are always uncertainties. On30

the other hand, nonlinear controllers can improve the stability of dynamic

systems, but they usually have more complex structures such that the prac-

tical implementation is more challenging than that of linear controllers [5].

Among the nonlinear controllers are those that use the model of the system

dynamics (model-based control systems) which have high performance as35

long as the physical parameters of the plant are well-known. However, when

there are significant differences between the known parameters and the real

ones, the model-based control systems may perform improperly [6]. Even

3



if those controllers fulfill this feature, their operation performance may be

affected by the presence of parametric uncertainties or unmodeled dynamics.40

Parametric uncertainties are undesirable and in many cases unpredictable

behaviors of the plant parameters. They are responsible for low control

performance and consequently for the deficient operation of the plant [7].

These uncertainties may arise due to the plant wear after the continuous

and unstopped operation, and the operation environment properties, such as45

temperature and viscosity, among others.

Adaptive control, robust control, and optimal controller tuning approaches

have been used to deal with parametric uncertainties.

The robust control approach [8] can deal with a set of bounded uncer-

tainties. In robust control, the uncertainties are considered as unknown mis-50

matches of the dynamic model, and then, the robust controller is designed

based on this imperfect model [8]. Robust control aims to maximize the un-

certainties and at the same time preserve the desired controller performance

[9], i.e., the controller sensitivity to the difference between the imperfect

model and the real system is minimized. Robust control has been widely55

studied, and several algorithms have been developed for high-performance

speed regulation of the DC motor [10–13]; nevertheless, the assumption of

bounded uncertainties behavior can carry some issues when the real system

is highly disturbed.

The optimal controller tuning approach is related to the adjustment of60

the control system parameters based on an optimization process. There are

some recent works under this approach in which it has been possible to obtain

the best control parameters that improve the operation of dynamic systems
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under different conditions and for diverse tasks. In order to achieve this, a

formal optimization problem is stated and solved off-line by using an opti-65

mizer. The solution to this problem contains the best control parameters,

which are implanted in the control system and remain fixed [14–16]. In [17]

for example, the gains of a Proportional Integral (PI) controller for the speed

control of a photovoltaic fed DC motor, are optimally tuned off-line by the

Bacteria Foraging Optimization Algorithm (BFOA) and the Firefly Algo-70

rithm (FA), respectively. In this case, the speed control is achieved with

promising performance and robustness to load changes. On the other hand,

a similar tuning methodology is successfully applied to the PI controllers of

the photovoltaic fed Switched Reluctance Motor (SRM) in [18] and of the

wind turbine fed Induction Motor (IM) in [19], by using the Ant Colony75

Optimization (ACO) and the Imperialist Competitive Algorithm (ICA), re-

spectively. A comparative study between the Genetic Algorithm (GA) and

the Particle Swarm Optimization (PSO) meta-heuristics in the PI off-line

controller tuning for a quadruple-tank process is presented in [20]. In that

work, the PSO based PI controller has the most promising performance. A80

similar study is provided in [21] where the GA, PSO, an Evolutionary Pro-

gramming (EP) technique and the ACO are used in the Proportional Integral

Derivative (PID) controller off-line tuning. This time the GA based controller

achieves the best performance. In both cases, some comparisons with con-

trollers obtained with classical tuning approaches are included, obtaining an85

outstanding performance with the meta-heuristic based alternatives. Despite

the proved effectiveness of the above control systems, the main drawback is

the necessity of knowing the states of the system during an execution time
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window and the information about the behavior of uncertainties, which in

almost all cases is very hard to satisfy.90

On the other hand, adaptive control is a term used to refer to a class of

control strategies that estimate the control parameters online by using the

system feedback (they can be the control gains or the physical parameters

of the plant). The obtained parameters are used in calculating an adequate

control signal that stabilizes the plant behavior and compensates the uncer-95

tainties [22].

Adaptive control has been studied from different approaches. Many adap-

tive control strategies have been designed based on Lyapunov stability or by

using a sensitivity index of the system output in the presence of disturbances

[23–25]. The aim is the convergence of the estimated parameters to the real100

ones after a certain period. Nevertheless, these strategies have some issues

when there are high-frequency parametric uncertainties [26], i.e., there is a

trade-off between the convergence speed of the estimated parameters and the

stabilization of the closed-loop system.

A relatively recent approach to adapt the control parameters online is105

based on the use of artificial intelligence techniques. Among the most com-

monly used techniques are neural networks and fuzzy logic. Adaptive control

systems based on neural networks [27–29] include weighted networks fed by

the dynamic system inputs which produce an output that contains a suitable

set of control parameters based on weighting and interconnection operations.110

On the other hand, adaptive control systems based on fuzzy logic use fuzzy

rules (if-then rules) to online estimate the control parameters. These rules

require a fuzzy set based on the dynamic system input and output informa-
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tion, which is transformed by a defuzzification method to select the most

appropriate control parameters [30, 31]. Many of these works include an115

optimization process to obtain the best intelligent controller configurations

(commonly, the parameters of the neural networks or fuzzy systems) that

handle particular dynamic system behaviors and operation conditions.

Moreover, this kind of intelligent controllers has been successfully ap-

plied to control DC motors. In [32], the optimal parameters of an Adaptive120

Neuro-Fuzzy Inference System Controller are tuned through an optimization

approach based on the Bat Algorithm. On the other hand, in [33], a Fuzzy

PID Supervised Online Recurrent Fuzzy Neural Network Based Controller

is tuned with the aid of the Anlion optimizer. In both of the above works,

the tuned controllers are used in the speed controls of DC motors and fit125

desired performance level under several well-defined operating conditions.

As it can be noticed, the intelligent adaptive control approach can achieve

high performance in the stabilization of the closed-loop system with the pres-

ence of specific parametric uncertainties. Nonetheless, these require a priori

knowledge of the input and output signals of the dynamic system subject to130

specific disturbances to be off-line trained or adjusted. The above becomes

a problem since uncertainties are often unpredictable.

Unlike the approaches presented at this point, an online optimization ap-

proach to adaptive control can provide a suitable parameter adaptation at

each time instant. It means that for each sampling time instant, a different135

set of optimal control parameters is obtained by an optimizer as a solution

of a dynamic optimization problem. Nevertheless, the optimizer remark-

ably influences in the performance of the adaptive control. Deterministic
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optimizers require information about the problem to be solved such as the

gradient vector to guide the search for the best solution into the neighbor-140

hood of a proposed initial solution [34–36]. When parametric uncertainties

exist, the best solution dynamically changes its position in the search space,

and this may affect the search capability of the deterministic optimizers due

to the high sensitivity of their requirements mentioned above. In that case,

the stochastic optimizers such as the bio-inspired ones can deal with those145

difficulties [37].

Nevertheless, the bio-inspired adaptive control approaches (those in which

an online optimization problem is stated and solved by using a bio-inspired

optimizer) have been studied a little. In [38], the gains of an integral and

proportional (IP) controller of a Linear Induction Motor (LIM) are online150

obtained by stating an optimization problem and solving it by using the GA.

Despite the satisfactory results obtained in that work, there is not enough

statistical evidence to guarantee the appropriate operation of its control strat-

egy.

When stochastic techniques are selected as optimizers, full statistical ev-155

idence must be presented to conclude that results will be reliable in future

runs [39]. In [40], the performance of several meta-heuristic optimizers in

the adaptive control of the DC motor is compared in simulation by using

descriptive and non-parametric statistical analysis. Unlike those results, this

work has been substantially modified regarding algorithmic features, prob-160

lem statement and experimental analysis, in order to statistically show the

feasibility of the proposed bio-inspired adaptive control approach in a real

prototype and determine its advantages based on experimental comparative

8



performance analysis with advanced and recent controllers. Then, in the

present work, the bio-inspired adaptive control strategy is based on a novel165

improved variant of the Differential Evolution (DE) optimizer and is used

to find the optimal control parameters of a DC motor online. This variant

includes a diversity mechanism aiming to perform an efficient explorative

search into an uncertain dynamic environment [41] and to avoid the prema-

ture convergence of the algorithm, which implies to regulate the DC motor170

speed under parametric uncertainties efficiently.

On the other hand, changes in the constrained dynamic optimization

problem are done to perform the experimental tests. In the new problem,

three parameters must be dynamically found through the time evolution

which increases the multi-modality of the problem because more solutions175

satisfy the performance criterion. Hence, the main contribution of this work

is the proposal of a bio-inspired adaptive control strategy based on an im-

provement of the DE algorithm for the highly efficient speed regulation of

the DC motor and its fair comparative performance analysis with other clas-

sical and advanced controllers with experimental evidence. Moreover, the180

theoretical validation of this approach is given by the control theory.

The paper is organized as follows: In Section 2, the bio-inspired adaptive

control strategy based on an online constrained dynamic optimization prob-

lem is stated and the Improved Differential Evolution (IDE) optimizer is also

described. A stability test of the proposed control strategy is performed in185

Section 3. Section 4 includes the analysis of the simulation and experimen-

tal results. Finally, in Section 5 conclusions are drawn, and future work is

presented.
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2. Proposed bio-inspired adaptive control strategy

The general operation of the proposed bio-inspired adaptive control strat-190

egy is shown in Fig. 1. This strategy aims to reduce the error in the speed

regulation task of the DC motor. For that, an optimization problem is stated

and solved online. A solution of the problem θ̄∗ (where θ̄∗ denotes the best of

a set of different θ̄ solutions) must contain the control parameters that mini-

mize the error between the current states z (acquired from the real DC motor)195

and the estimated states z̄ (obtained from an estimated dynamic model). The

solution θ̄∗ is obtained with the aid of the proposed bio-inspired optimizer

and is used in calculating the control signal for each sampling instant △t.

It is important to highlight that z includes the angular speed and accel-

eration of the motor, but these values are experimentally estimated by using200

the symmetric difference quotient and the Kalman filter, respectively, which

are explained in detail in the later sections.

2.1. Constrained dynamic optimization problem

The objective functions in (1) and (2) are included into the constrained

dynamic optimization problem (CDOP) to dynamically find an optimal vec-

tor θ̄∗ = [θ̄∗0, θ̄
∗
1, θ̄

∗
2]

T for each sampling time △t. Those functions (J1 and

J2) consider the integral squared error among the current states z and the

estimated ones z̄ for a time interval Ω ∈ [topt − △w, topt], where topt is the

time instant when the optimization process is performed and △w is the time

interval in which the past states z of the motor and of the estimated states z̄

are used in the error calculation. It is worth to mention that before the first

△w instant, there is no enough information about the motor states, then the
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M

Figure 1: Proposed control strategy.

11



parameters θ̄∗ cannot be obtained and is necessary to use a constant control

signal u0 until reaching △w.

J1 =

∫

t∈Ω

(

z1 (θ, t)− z̄1
(

θ̄, t
))2

dt (1)

J2 =

∫

t∈Ω

(

z2 (θ, t)− z̄2
(

θ̄, t
))2

dt (2)

Solving a multi-objective optimization problem is always more expen-

sive in computational time than solving a single-objective one. Taking into205

account that the proposed adaptive control strategy must solve the opti-

mization problem online (at each sampling time △t), the weighted sum

method [42] is used to transform this problem into a single objective one

as J = J1 + J2.

2.1.1. Constraints210

For simulation results, it is necessary to model the behavior of the DC

motor. Then, one of the dynamic constraints is related to the dynamic model

of the DC motor. The dynamic model of the DC motor is given in (3) and

(4) and its electro-mechanic diagram is shown in Fig. 2, where q, q̇, q̈ are

the angle, the angular speed and the angular acceleration of the shaft, ia is215

the armature current, J0 is the rotor moment of inertia, km is the torque

constant, b0 is the viscous friction constant, τL is the load torque, Ra is the

armature resistance, La is the armature inductance, ke is the electromotive

force constant and V is the input voltage.

La

dia
dt

+Raia + keq̇ = u (3)

12



J0q̈ + b0q̇ = km

(

ia −
τL
km

)

(4)

M

Figure 2: Electro-mechanic diagram of the DC Motor.

Unlike the optimization problem given in [40], in this paper the DC motor220

dynamic model is transformed into the state space z = [z1, z2]
T = [q̇, q̈]T , then

the dynamic model in (3) and (4) can be written as in (5) assuming τL = 0,

where θ0 = ke +
Rab0
km

, θ1 =
J0Ra

km
+ Lab0

km
and θ2 =

J0La

km
.

ż2 =
1

θ2
u−

θ0
θ2
z1 −

θ1
θ2
z2 (5)

This coordinate change is required for experimental purposes in order to

reduce the sensor devices.225

Hence, dynamic constraints are related to the DC motor dynamics ż =

f(θ̄, z, u) and to the load free estimated DC motor dynamics given in (6) for

all t ∈ Ω considering the initial conditions z = [0, 0]T and z̄(topt − △w) =

z(topt−△w), respectively. For experimental results (laboratory testing with a

real prototype), the constraint related to the DC motor dynamics is removed230
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because the current states are given through the use of angular position

sensors and/or through an estimation.

˙̄z2 =
1

θ̄2
u−

θ̄0
θ̄2
z̄1 −

θ̄1
θ̄2
z̄2 (6)

The controller u in (7) is proposed for the speed regulation of the DC

motor, where v = Kacs
p z̃1 + Kacs

d z̃2, z̃1 = z1d − z1 and z̃2 = z2d − z2 = −z2

with Kacs
p and Kacs

d as the proportional and derivative gains, z1d and z2d as

the desired speed and acceleration.

u = θ̄2v + θ̄0z1 + θ̄1z2 (7)

Additionally, the maximum and minimum bounds of the control signal

(8) given by the capacity of the power source are set as constraints.

umin ≤ u(topt) ≤ umax (8)

2.2. Bio-inspired optimizer

Usually, the real-world optimization problems are tough to solve. Nev-

ertheless, bio-inspired optimizers can get useful solutions to these problems235

with a reasonable computational cost. Moreover, they do not require special

conditions such as continuity or differentiability of the optimization problem

[43]. That is why they are increasingly being used in recent years.

Despite the advantages of bio-inspired optimizers, the No Free Lunch

Theorem establishes that there is no universal bio-inspired optimizer capable240

of solving all kinds of problems [44]. For this reason, it is necessary to

identify the problem nature and choose the fittest bio-inspired optimizer.

This process may include the testing of different optimizers and performing

changes in their search mechanisms.
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Differential Evolution (DE) is an optimizer bio-inspired in the process245

of natural evolution [45] since it includes Neo-Darwinism theory evolution-

ary operators like mutation, crossover, and selection. It is well-known and

widely used because of its simplicity, high effectiveness and applicability in

solving real-world problems [46–48]. The general operation of DE is shown

in Algorithm 1. In this optimizer, an initial population of X0 ∈ RNP×D
250

individuals (NP design vectors of dimension D) is generated randomly in

the search space. For each generation G (from the first generation until

Gmax), the NP individuals in population XG ∈ RNP×D called parents are

mutated and recombined to create new offspring individuals. For every new

generation, the greedy selection is made between the parents and offsprings255

according to their fitness (the value of the objective function). Finally, the

best individuals are found in the last generation of the population.

Remarking for this particular problem, the population XG contains NP

different solution vectors θ̄ and at the end of the algorithm, the vector θ̄∗ is

selected from XGmax
according to the fitness value J .260
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Algorithm 1 Differential Evolution

1: Generate initial population X0 with NP individuals

2: Evaluate X0

3: G← 0

4: while G ≤ Gmax do

5: for each xi ∈ XG do

6: Generate a mutant individual vi

7: Generate an offspring individual ui

8: Evaluate ui

9: end for

10: Select individuals for G+1

11: G← G+ 1

12: end while

13: θ̄∗ = xbest

Different DE variants have been proposed [45] and each one aims to im-

prove the exploration (the process to identify potentially good regions of the

search space) and exploitation (the process to refine an identified region)

capabilities of DE [49]. The differences among the DE variants lie in the

different ways to perform the mutation and recombination operations, and265

in the number of parents used to generate a new individual. These variants

follow a simple nomenclature DE/a/b/c, where ”a” refers to the base indi-

vidual used to generate a mutant, ”b” is the number of difference vectors (a

vector generated by the difference of two different parents randomly selected

from population), and ”c” is the recombination operation used to generate270

the offspring by combining a parent individual with the generated mutant
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[50].

This paper compares a proposed improved DE (IDE) with the perfor-

mance of variants which include Best individuals in the evolutionary process

and involve discrete recombination, arithmetic recombination and a com-275

bined discrete - arithmetic recombination.

2.2.1. Discrete recombination with best individuals

Discrete recombination includes binomial and exponential crossover [51].

In binomial crossover each part of the coded information (j− th design vari-

able) of the i− th offspring ui,j has the same crossover probability (CR) in280

the interval [0, 1] to include information from the parent xi,j or the mutant

vector vi,j = xbest,j + F (xr1,j − xr2,j) with xr1 and xr2 two randomly selected

individuals and xbest the best individual in population. On the contrary, with

exponential crossover, the information of the parent is consecutively passed

to the offspring until a random number surpasses the crossover probability285

CR. At that moment, the remaining information is passed from the mutant

vector. The scale factor (F ) provides the mutation rates and it is in the

interval [0, 1]. The pseudo-code of the discrete recombination is shown in

Algorithms 2 and 3. The variants of DE that use discrete recombination

with best individuals are referred as DE/best/1/bin and DE/best/1/exp for290

the binomial and exponential crossover, respectively.
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Algorithm 2 Binomial crossover

1: function BinomialCrossover(xi,vi)

2: ui ← xi

3: k ← irandom(1, D)

4: for j ← 1 to D do

5: if random(0, 1) < CR or j = k then

6: ui,j ← vi,j

7: end if

8: end for

9: return ui

10: end function

Algorithm 3 Exponential crossover

1: function ExponentialCrossover(xi,vi)

2: ui ← xi

3: k ← irandom(1, D)

4: j ← k

5: L← 0

6: do

7: ui,j ← vi,j

8: j ← mod(j,D) + 1

9: L← L+ 1

10: while random(0, 1) < CR & L 6= D

11: return ui

12: end function
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2.2.2. Arithmetic recombination with best individuals

Arithmetic recombination is different from the discrete crossover opera-

tion since this is rotation invariant. The offspring ui = vi is generated by

linearly perturbing xi by using recombination differentials and mutation dif-295

ferentials. In this case, the arithmetic recombination in (9) is used. The

recombination differentials are those difference vectors where the base vec-

tor appears in them. In (9), the recombination differential is the difference

vector between xi and the best individual xbest among the population. The

mutation differentials are those vectors that do not include the base vector.300

In (9), the mutation differential is the difference vector between two differ-

ent random individuals (xr1 and xr2). The parameter K is the crossover

rate in the interval [0, 1] to provide linear recombination. The DE variant

that uses arithmetic recombination with the best individual is referred to as

DE/current-to-best/1.305

vi = xi +K(xbest − xi) + F (xr1 − xr2) (9)

2.2.3. Combined discrete - arithmetic recombination with best individuals

In the combined discrete - arithmetic recombination the vector vi in

the arithmetic recombination (9) is included into the binomial (see Algo-

rithm 2) or exponential (see Algorithm 3) discrete recombinations. The DE

variants that use the combined discrete-arithmetic recombination with the310

best individual are referred as DE/current-to-best/1/bin and DE/current-to-

best/1/exp.
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2.2.4. Proposed improvement

The IDE algorithm is proposed to be used with the adaptive control

strategy. Algorithm 4 shows the operation of the improved DE. As it can315

be seen, this version is similar to the DE/best/1/bin variant of DE where

the best individual of each generation is used to generate a mutant. The

main two differences with IDE lie in the binomial crossover and the selection

process. In the binomial crossover, only the j − th randomly selected design

parameter vi,j is included into the j− th design variable of the offspring ui,j.320

Otherwise, the information of the parent vector is included. The above is the

same as set the crossover rate as CR = 0 in the Algorithm 2. In the selection

process for the generations before PC×Gmax, where PC is a percentage of all

generations in the interval [0, 1], the best individual is not selected as the best

of the entire population but is selected by tournament in order to prevent325

the premature convergence of the optimizer to a local minimum. In the

tournament selection operation described in Algorithm 5, the best individual

is obtained from a competition among TS randomly selected contestants,

then this elite individual cannot be only the best of the whole population

but the best of a reduced group [52]. After the PC × Gmax generations,330

the criterion to select the best individual turn out to be the same as in

DE/best/1/bin to enhance the exploitation by the end of the optimization

process. It is important to mention that the DE/best/1/bin variant of DE is

selected to be used by IDE because it includes some advantageous features

of the DE/best class. This particular class of DE variants provides a faster335

convergence to promising solutions [53]. For the proposed control strategy,

this is a desirable feature since the solution of the optimization problem must
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be obtained in a short time (less than the sampling time △t).

Algorithm 4 Improved Differential Evolution

1: Generate initial population X0 with NP individuals

2: Evaluate X0

3: G← 0

4: while G ≤ Gmax do

5: if G ≤ PC ×Gmax then

6: Select the best individual by tournament xbest

7: else

8: Select xbest as the best individual in population

9: end if

10: for each xi ∈ XG do

11: Generate a mutant individual vi

12: Generate an offspring individual ui

13: Evaluate ui

14: end for

15: Select individuals for G+1

16: G← G+ 1

17: end while

18: θ̄∗ = xbest
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Algorithm 5 Selection by tournament

1: function Selection()

2: rand← irandom(1, NP )

3: xbest ← xrand

4: t← 0

5: while t < TS do

6: rand← irandom(1, NP )

7: if f(xrand) < f(xbest) then

8: xbest ← xrand

9: end if

10: t← t + 1

11: end while

12: return xbest

13: end function

2.2.5. Constraint handling

For solving the constrained optimization problem stated before, a mech-340

anism to handle constraints is implemented to work along with the DE vari-

ants. This mechanism is known as the criterion of Deb and is used to decide

whether one solution is better than another [54]. The criterion of Deb states

the following:

• Any feasible is preferred to an infeasible solution.345

• Among two feasible solutions, the one having better objective function

value is preferred.
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• Among two infeasible solutions, the one having smaller constraint vio-

lation is preferred.

Additionally to the criterion of Deb, if two infeasible solutions have the same350

constraint violation, the preferred solution is chosen randomly.

3. Stability test

Let assume that a suitable solution of the dynamic optimization problem

given in Subsection 2.1 is found, then the controller in (7) asymptotically

stabilizes the dynamic system (5) at the origin [z̃1, z2]
T = [0, 0]T .355

Proof. Let the change of coordinates [z̃1, z2]
T where z̃1 = z1d − z1, then the

candidate Lyapunov function in (10) is considered.

V (z̃1, z2) =
1

2
θ̄2z

2
2 +

1

2
θ̄2K

acs
p z̃21 (10)

The derivative with respect to time of (10) is given in (11).

V̇ = θ̄2z2ż2 + θ̄2K
acs
p z̃1 ˙̃z1 (11)

Assuming that the performance of the bio-inspired optimizer provides

a solution (θ̄∗) of the problem in Subsection 2.1 which implies that J =360

J1 + J2 = 0 and consequently J1 = 0 and J2 = 0 (since J1, J2 ∈ R+), then

the error between the current states z and the estimated ones z̄ must be

decreased to zero and hence z̄ = z. Therefore, the estimated DC motor

dynamics in (6) can be written as in (12).

ż2θ̄2 = u− θ̄0z1 − θ̄1z2 (12)
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Substituting u from (7) in (12), the obtained closed-loop system is ex-365

pressed in (13).

ż2 = Kacs
p z̃1 −Kacs

d z2 (13)

Using (13) in (11) results:

V̇ = −θ̄2K
acs
d z22 ≤ 0 (14)

Based on the La Salle’s invariance principle, V̇ = 0 =⇒ [z̃1, z2]
T = [0, 0]T ,

the origin [z2, z̃1]
T = [0, 0]T is asymptotically stable.

370

4. Results

4.1. Simulation details

For simulation purposes, the DC motor speed must be regulated to z1d =

52.35 rad/s = 500 rpm during 15s. The sampling time is set to △t = 5 ms.

Parametric uncertainties are included into the DC motor dynamics. The375

disturbances given in Table I are added to the nominal motor parameters. As

it can be seen in Table I, the parameters Ra, La, km and ke are continuously

disturbed during the execution time t ∈ [0, 15]s and they sinusoidally vary up

to 10% of their nominal values. Additionally, two discontinuous disturbances

are included. In the first one, the nominal values of b0 and J0 are increased to380

300% and 930% from their nominal values, respectively in the time interval

t ∈ [10, 13]. In the second one, a disturbance ξ is added to (5) when t ∈ [4, 7]s.
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Table I: Results dynamic.

Nominal value Disturbed value

Ra = 9.665 Ω Ra(t) = Ra + 0.1Rasin
(

2π
3
t
)

La = 102.44× 10−3 H La(t) = La + 0.1Lasin(πt)

km = 0.3946 N ·m/A km(t) = km + 0.1kmsin (2πt)

ke = 0.4133 V · s/rad ke(t) = ke + 0.1kesin (2πt)

b0 = 5.85× 10−4 N ·m · s b0(t) = b0 + 17.55× 10−4 N ·m · s when t ∈ [10, 13]s

J0 = 3.45× 10−4 N ·m · s2 J0(t) = J0 + 32.1648× 10−4 N ·m · s2 when t ∈ [10, 13]s

ξ = 0 ξ = −0.05 Ra

J0La

when t ∈ [4, 7]s

In terms of θ0, θ1 and θ2, the DC motor parameters vary up to 20%,

1100% and 1100% respectively. Fig. 3 shows the nonlinear behavior of the

parameters θ0, θ1, θ2 and the disturbance ξ.385

The previously described conditions are used to test the performance

of the proposed bio-inspired control strategy named as Adaptive Control

Strategy (ACS) based on the IDE (ACS-IDE). The strategy parameters are

set as △w = 50 ms, umin = −48 V , umax = 48 V , u0 = 20 V . The controller

in the proposed strategy has the gains Kacs
p = 6700 and Kacs

d = 350.390

In the present work, seven bio-inspired adaptive control strategies based

on different DE variants are selected to perform the test and make com-

parisons. These strategies are based on five different DE variants and two

optimizers recurrently used in many controller tuning applications (GA and

PSO) [55–57]. The adopted strategies are listed below:395
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Figure 3: Behavior of the DC motor parameters in terms of θ0, θ1, θ2 and the disturbance

ξ.
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• Bio-inspired adaptive control alternatives:

– ACS-DE/best/1/bin

– ACS-DE/best/1/exp

– ACS-DE/current-to-best/1

– ACS-DE/current-to-best/1/bin400

– ACS-DE/current-to-best/1/exp

– ACS-GA

– ACS-PSO

It is important to highlight that the parameters of any bio-inspired op-

timizer in these adaptive control strategies have a crucial role in their effec-405

tiveness in finding appropriate solutions [58]. So, for two different parameter

configurations of the same optimizer, different performances may be achieved.

In order to perform fair comparisons among the optimizers in the proposed

adaptive control strategy, all of them are tuned iteratively by using the pack-

age i-race of the statistical software R.410

The tuned parameters of the DE variants are shown in Table II. In this,

the parameters K and F are randomly obtained in the intervals [Kmin, Kmax]

and [Fmin, Fmax], respectively for each generation, while CR is a fixed pa-

rameter.

The selected GA uses the SBX [59] and PM [60] real-coded genetic op-415

erators with distribution indexes ηc and ηm, and probabilities pc and pm,

respectively. Moreover, an elitist selection is adopted to retain only the

fittest NP individuals for each generation. The tuned GA parameters are

shown in Table III.
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Table II: Parameters of the DE variants.

Variant CR Fmin Fmax Kmin Kmax PC TS

DE/best/1/bin 0.472 0.568 0.729 - - - -

DE/best/1/exp 0.630 0.942 0.950 - - - -

DE/current-to-best/1 - 0.618 0.869 0.813 0.959 - -

DE/current-to-best/1/bin 0.494 0.706 0.873 0.485 0.570 - -

DE/current-to-best/1/exp 0.345 0.540 0.676 0.176 0.764 - -

IDE 0.000 0.699 0.768 - - 0.317 17

The adopted PSO variant is described in [61] and includes a linear de-420

creasing inertia weight [62]. The tuned PSO parameters are shown in Table

III where C1 and C2 are the weights that ponder the swarm and the personal

knowledge, and Vmin, Vmax are the bounds of the inertia factor.

For all optimizers, the population size is set as NP = 25 and the stop

condition uses a maximum number of generations of Gmax = 60, then 1500425

evaluations of the objective function J are performed for each optimization

process. The search space of the dynamic optimization problem is bounded

according to Table IV. These bounds are selected taking into account the

magnitude of the nominal values of the DC motor parameters, considering a

reasonably large threshold for the search.430

In addition to the bio-inspired adaptive control alternatives; linear, adap-

tive and robust controllers are considered to make comparisons. Those con-

trollers are named and grouped in this paper as classical-advanced control

strategies and are the following:
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• Classical-advanced control strategies:435

– PI controller

– Model Reference Adaptive Controller (MRAC)

– Generalized Proportional Integral Observer based Robust Con-

troller (GPIRC)

The main reason to include the performance of such classical-advanced440

control strategies is that the PI controller is well-known and widely used

in industry for speed regulation because of its high performance and easy

implementation [63]. On the other hand, the MRAC aims to adapt the

system parameters periodically by using the closed loop states in order to

get the desired response [64]. Finally, the GPIRC is a robust controller that445

works for a broad class of nonlinear systems [65].

For the simulation test, the proportional and integral gains of the PI

controller are set as Kpi
p = 0.03 and Kpi

i = 7.5. The adaptation gain of the

MRAC is Γ = diag(2.1 × 104, 6.9 × 102, 8.9 × 10−3) ∈ R3×3, the P matrix

is chosen as P ∈ R2×2 where P1,1 = 3.1917, P1,2 = P2,1 = 0.0083, P2,2 =450

Table III: Parameters of the GA and the PSO, which are recurrently used in controller

tuning.

Optimizer pc ηc pm ηm

GA 0.494 0.132 0.783 16.840

Optimizer C1 C2 Vmin Vmax

PSO 0.940 1.990 0.039 0.146
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0.0025 and the proportional and derivative gains are selected as Kmrac
p =

600, Kmrac
d = 200. The design parameters of the characteristic polynomial

associated to the GPI observer in Pc(s) =
∏2

i=0(s
2 + 2hiωnis + ω2

ni) are set

as ωn0 = 95, ωn1 = 130, ωn2 = 0.01, h0 = 0.01, h1 = 1 and h2 = 1, and the

observer states use the proportional and derivative gains Kgpirc
p = 2500 and455

Kgpirc
d = 200, respectively.

It is worth to mention that the control parameters of the proposed adap-

tive control strategy, the bio-inspired adaptive control alternatives, and the

classical-advanced control strategies are tuned empirically by a trial and er-

ror procedure after an extensive set of runs and the best resulting control460

parameters are presented above. All control strategies are developed in C++

programming language in a PC with a 3.60 GHz i7-4790 processor.

4.2. Simulation results and discussion

In this subsection, the proposed adaptive control strategy based on the

IDE is compared with the performance of bio-inspired adaptive control al-465

ternatives and classical-advanced control strategies presented in Subsection

4.1.

The bio-inspired adaptive control strategies are tested during 100 inde-

Table IV: Parameter bounds.

Variable min max

θ̄0 0.1 5.0

θ̄1 1.0× 10−3 5.0× 10−2

θ̄2 1.0× 10−5 5.0× 10−4
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pendent runs. The classical-advanced controllers are tested in a single run

because of their deterministic behavior which means that the same error is470

presented in all runs. The performance of each control system is measured by

using three different indicators in the speed error: the Integral Squared Er-

ror (ISE), the Integral Absolute Error (IAE) and the Integral Time-weighted

Absolute Error (ITAE). Those control measures are computed after the set-

tling period among controllers (t = 3s) to perform fair comparisons among475

them.

Tables V, VI and VII contain the results in simulation of the control

systems related with the ISE, IAE and ITAE control measures respectively.

Each column represents the best and worst values of those measures, and the

mean and standard deviation for all the 100 independent runs of the adaptive480

control strategy based on the bio-inspired meta-heuristics, respectively. In

the case of the classical-advanced controllers, the row data is the same due

to the deterministic way to generate the control signal among runs. The

boldface results indicate the best value of each column. Moreover, Figs. 4

and 5 show the speed behavior of the DC motor speed for the best run of each485

control system in the simulation. From the summary of results presented in

those tables and figures, different findings are observed:

• The proposed bio-inspired ACS-IDE overcomes all control strategies

since it presents the best performance according to the control measures

(the ISE, IAE, and ITAE). These measures indicate that the proposal490

reduces the amplitude of the speed errors over time with less speed

error band and less sensitivity to parameter variations through the

simulation process.
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• The strategies based on the best variants of DE have a better perfor-

mance than the ones based on the GA and PSO, which are recurrently495

used in many controller tuning problems.

• Among the bio-inspired control alternatives, the ACS-PSO has the

worst performance regarding the ISE, IAE and ITAE indicators and

also is the less reliable strategy according to the standard deviation

values of these measures. This bad performance can be due to the lack500

of a selection mechanism (replacement mechanism) in the PSO, which

is compensated by using leader solutions but cannot prevent premature

convergence to local solutions.

• Concerning the ACS-GA, it has acceptable performance, but due to the

less exploitative behavior of the GA (compared with the best variants505

of DE), more objective function evaluations could be required in order

to achieve similar performance to the DE-based controllers. Unlike the

GA, the adopted DE variants always use the best solution (this can

be the relative best solution in the case of the IDE) to find a suitable

search direction, which allows finding good solutions in fewer objective510

function evaluations with a better exploitative behavior.

• All bio-inspired adaptive controllers improve the speed regulation per-

formance when compared with the classical-advanced controllers. Also,

the proportionally small value of the standard deviation of the ISE,

IAE, and ITAE measures for the bio-inspired adaptive control systems,515

shows the reliability of such controllers. In the corresponding figures,

it is important to notice that the error produced with bio-inspired
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adaptive controllers does not exceed the 4% of the reference speed sig-

nal when the discontinuous uncertainties are added (in t ∈ [4, 7]s
⋃

[10, 13]s). As long as continuous perturbations are included, the error520

level of these strategies is under 1% (in t 6∈ [4, 7]s
⋃

[10, 13]s).

• Among classical-advanced controllers, the GPIRC presents the largest

amplitude of the speed error in an interval of the time (based on the ISE

measure), but this is the most stable when the time goes on (based on

the IAE and ITAE measures). This indicates that it is sensible to large525

and discontinuous uncertainties presented in the inertia and friction

forces included into the parameters θ1 and θ2 of the motor, and this is

confirmed in the corresponding figure in the time interval t ∈ [10, 13]s,

where the GPIRC requires more time to stabilize the motor speed.

Nevertheless, this controller is more stable with continuous parameter530

variations and with discontinuous disturbances (t 6∈ [10, 13]). The vari-

ation of the speed error from the reference signal in the time interval

t ∈ [10, 13]s is around to 6%, 4% and 38% for the PI controller, MRAC

and GPIRC, respectively. On the contrary, when the continuous uncer-

tainties are presented in the time interval t 6∈ [10, 13]s, the error level535

is under 3%, 2% and 1%. As it is expected, the linear controller (the

PI controller) presents the worst performance for this last case.

• Even when additional dynamics ξ are not considered in the controller

used by the ACS-IDE, the IDE can find a suitable set of control param-

eters θ̄∗ that handles them. In other words, this proposed bio-inspired540

strategy can compensate the disturbance ξ with the parameters θ̄0, θ̄1
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and θ̄2. This behavior is attributed to the search capability of the

bio-inspired optimizers.

• Another interesting behavior is observed when the motor is highly dis-

turbed, and the ACS-IDE provides better performance (see Fig. 4545

when t ∈ [10, 14]s). This improved performance is due to the form of

the search space. With a high perturbation, the number of possible so-

lutions to the optimization problem is decreased and also the number of

local solutions, then it is easier for the optimizers to find a global best

solution. On the contrary of what can be thought, these perturbations550

can benefit the performance of the proposed bio-inspired strategy.

It is important to remark that the proposed ACS-IDE, the bio-inspired

adaptive control alternatives, the PI controller and the MRAC present a

similar energy consumption mean around [0.2032, 0.2048]Wh. Meanwhile,

the energy consumption of the GPIRC is 1.475Wh. Around seven times more555

energy consumption than the other controllers is required for the GPIRC

in order to compensate the discontinuous disturbance in the time interval

[10, 13]s.

In statistics, when two different samples of a given procedure are subject

to random variations (as in the case of bio-inspired adaptive controllers)560

and cannot be assumed to belong to a normal distribution of probability, is

required to use non-parametric tests to make comparisons [66] and to draw

formal conclusions.

The non-parametric test of Wilcoxon reveals differences between distri-

butions of two samples and hence identifies if one is better than the other. In565

this work the Wilcoxon test is used to perform comparisons by pairs among
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Figure 4: Speed behavior of the best run of the different control systems in simulation

(Part I). The speed regulation error (e) is shown in the subplots.
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Table V: ISE values for the simulation tests of the different control systems.

Adaptive control strategy alternative ISEbest ISEworst ISE std(ISE)

ACS-DE/best/1/bin 0.392 0.668 0.502 0.071

ACS-DE/best/1/exp 0.391 1.668 0.684 0.389

ACS-DE/current-to-best/1 0.397 1.446 0.517 0.125

ACS-DE/current-to-best/1/bin 0.399 1.750 0.881 0.464

ACS-DE/current-to-best/1/exp 0.425 1.653 0.810 0.372

ACS-IDE 0.317 0.741 0.440 0.089

ACS-GA 0.560 4.059 0.927 0.472

ACS-PSO 0.485 16.809 1.923 2.597

PI 22.501 22.501 22.501 0

MRAC 9.704 9.704 9.704 0

GPIRC 64.517 64.517 64.517 0

the performance indicator values ISE, IAE and ITAE of the 100 runs achieved

by the bio-inspired adaptive controllers and conclude if one of them performs

better than the other. It is important to mention that before performing the

Wilcoxon test, the Shapiro-Wilk test is performed in order to check the nor-570

mality for each pair [67]. The results of the Shapiro-Wilk test show that for

almost 90% of the pairs is necessary to use a statistical non-parametric test

such as the Wilcoxon one.

Tables VIII, IX and X show the results of the Wilcoxon test for every

possible pair. The R+ value indicates the times that the first alternative575

overcomes the second one. On the flip side, R− indicates the times that the
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Table VI: IAE values for the simulation tests of the different control systems.

Adaptive control strategy alternative IAEbest IAEworst IAE std(IAE)

ACS-DE/best/1/bin 1.686 1.933 1.810 0.058

ACS-DE/best/1/exp 1.679 2.186 1.864 0.117

ACS-DE/current-to-best/1 1.714 2.002 1.819 0.065

ACS-DE/current-to-best/1/bin 1.697 2.168 1.907 0.131

ACS-DE/current-to-best/1/exp 1.729 2.165 1.912 0.110

ACS-IDE 1.575 1.838 1.681 0.056

ACS-GA 2.012 3.153 2.244 0.158

ACS-PSO 1.850 3.510 2.189 0.308

PI 14.261 14.261 14.261 0

MRAC 9.401 9.401 9.401 0

GPIRC 7.424 7.424 7.424 0

second alternative overcomes the first one. The p− value denotes the proba-

bility of accepting the null hypothesis which establishes that a pair of samples

has the same distribution. Then, p−value is also related with the statistical

significance of the test, so values under a reasonable percentage (typically 5%580

or 10%) allow the rejection of the null hypothesis and the acceptance of the

alternative hypothesis. For the performed tests, the statistical significance is

set to 5% and the two-sided alternative hypothesis is selected. The two-sided

hypothesis establishes that two samples have different distributions and in

that case, the R+ and R− values reveal the location of each distribution. In585

Tables VIII, IX and X, the winner of each test is shown in boldface. Table
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Table VII: ITAE values for the simulation tests of the different control systems.

Adaptive control strategy alternative ITAEbest ITAEworst ITAE std(ITAE)

ACS-DE/best/1/bin 14.314 15.925 15.221 0.347

ACS-DE/best/1/exp 14.371 19.384 15.840 1.302

ACS-DE/current-to-best/1 14.382 17.819 15.333 0.497

ACS-DE/current-to-best/1/bin 14.503 19.230 16.494 1.565

ACS-DE/current-to-best/1/exp 14.699 19.277 16.458 1.249

ACS-IDE 13.407 15.783 14.305 0.496

ACS-GA 16.830 29.215 18.969 1.650

ACS-PSO 15.536 36.212 19.166 3.768

PI 130.612 130.612 130.612 0

MRAC 83.756 83.756 83.756 0

GPIRC 73.950 73.950 73.950 0

XI summarizes the overall results of the performed Wilcoxon test. Accord-

ing to the number of wins, the best performing alternative turned out to be

the ACS-IDE and is followed by the ACS-DE/best/1/bin, ACS-DE/current-

to-best/1, ACS-DE/best/1/exp, ACS-DE/current-to-best /1/bin, and ACS-590

DE/current-to-best/1/exp, ACS-GA and ACS-PSO in that order.

Based on the statistical evidence of results in simulation, the ACS-IDE

proved to have the best performance. Then, the ACS-IDE is a suitable

alternative for the problem of the speed regulation task of the DC motor

when there are parametric uncertainties, and its performance is tested next595

for the experimental stage.
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Figure 5: Speed behavior of the best run of the different control systems in simulation

(Part II). The speed regulation error (e) is shown in the subplots.

4.3. Experiment details

The complete experimental prototype is illustrated in Fig. 6 and the

closed-loop system is shown in Fig. 7. The experimental prototype uses

a PC with a 3.60 GHz i7-4790 processor with a data acquisition board600

Sensoray 626 to get the angular position of the motor from a rotary en-

coder BEI E25BB. The angular speed and acceleration of the motor are

estimated. The output control signal, computed in the PC, is sent to the

servo-amplifier 25A8B-GAL through the analog output of the acquisition

board. This servo-amplifier requires an external power source of 48V/6A.605

The amplified signal is finally used to control the permanent magnet DC

motor MET 3B-9013182D which is assembled with the disturbance mech-

anism. This mechanism is shown in Fig. 6 and is designed to add some

friction and inertia to the DC motor by incorporating a solid iron disk with
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a mass of 1.64Kg and an inertia of 0.00297 Nms2.610

The real-time implementation of the proposed adaptive control strategy is

shown in Fig. 8. In this, a Sensoray 626 timer configured with a frequency of

200 Hz (i.e., with a period of 5ms), is used as the real-time clock. The timer

periodically triggers a high priority software interruption which is handled

by the PC with an execution thread. This thread is responsible for acquiring615

the motor states and computing the corresponding control signal, as well as

update the optimization problem to find the best control parameters.

The interruption thread tasks are detailed next:

1. Get angular position: Reads the counter register of the Sensoray

626 board which counts the pulses of the rotary encoder. This in-620

formation is then used to compute the angular position of the DC

motor by dividing the count by the linear resolution of the encoder as

q(t) = 2π count
resolution

.

2. Estimate angular speed: Estimates the angular speed of the DC mo-

tor by using the symmetric difference quotient ẑ1(t) =
q(t+△t)−q(t−△t)

2△t
.625

3. Filter angular speed: Filters the angular speed of the DC motor by

using a Kalman Filter z1(t) = q̇(t) = Kkẑ1(t)+(1−Kk)z1(t−△t) where

the Kalman gain Kk obtained from [68], with Q = 0.1 and R = 0.9, is

used in order to decrease the noise added by the symmetric difference

quotient.630

4. Estimate the angular acceleration: Estimates the angular accel-

eration of the DC motor by using the symmetric difference quotient

z2(t) = q̈(t) = q̇(t+△t)−q̇(t−△t)
2△t

.

5. Store states: Stores the current states z = [z1, z2]
T in memory.
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6. Update control signal: Computes and stores the corresponding con-635

trol signal u(t) by using the current motor states z(t) and the last found

control parameters θ(t). This control signal is first transformed to a

digital value by ud = ⌊u resolution
max voltage

⌋, with the Sensoray 626 DAC con-

verter resolution of 213 − 1 and the maximum servo-amplifier output

of 48V are taken into account. Then, ud is sent to the DAC register640

of the Sensoray 626 board and is transformed to an analog signal in

[−10, 10]V which feeds the DC motor servo-amplifier.

7. Update optimization problem: Updates the optimization problem

by taking into account the stored states and control signals within the

past time interval Ω.645

8. Run optimizer: Runs the IDE algorithm to find the most suitable

controller parameters. It is important to mention that this optimization

process takes at most 1.5ms.

9. Update controller parameters: Replaces the controller parameters

with those obtained from the optimization process.650

For the experimental results the ACS-IDE and the classical-advanced

control strategies are compared. The conditions for the experimentation

are similar to those presented in Subsection 4.1. The main differences are

described below:

• The tests are performed during 10s with the same sampling time ∆t =655

5ms and the only considered perturbation is the change of the DC

motor load in t ∈ [4, 8]s which modifies its friction and inertia param-

eters, i.e., for each experimental test, the iron disk of the disturbance
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mechanism is added to the motor when t = 4s and is removed when

t = 8s.660

• The inverse dynamic controller gains are set as Kacs
p = 800 and Kacs

d =

55.

• The search space of the optimization problem for the ACS-IDE is

bounded according to the Table XII. As an authors suggestion, in order

to establish the bounds of the search space for the experimental setup,665

the difference value between θ̄i,max and θ̄i,min must be approximately

equal to the nominal value θi (this can be obtained from the manu-

facturer specification or from an identification process). For the pa-

rameters θ̄0 and θ̄1, it is recommended that their interval [θ̄i,min, θ̄i,max]

includes their nominal values given by θ0 and θ1 in the middle of it. In670

the case of θ̄2, it is suggested that its lower bound θ̄2,min be over the

25% of its nominal value θ2.

• The adaptation gain of the MRAC is Γ = diag(1.0×104, 6.9×102, 1.0×

10−3) ∈ R3×3.

• The parameters of the GPIRC controller are set as ωn0 = 1.7, ωn1 =675

0.25, ωn2 = 1.7, h0 = 0.01, h1 = 2.2 and h2 = 0.01, and its PD

controller gains as Kgpirc
p = 3500, Kgpirc

d = 200.

The remaining conditions for the experimental tests, in the parameters

of the ACS-IDE and classical-advanced control strategies, are the same as

described in Subsection 4.1.680
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Figure 6: Experimental prototype.

The parameters of all control systems are obtained through an arduous

process of trial and error tests.

4.4. Experiment results and discussion

The ACS-IDE strategy and classical-advanced controllers are experimen-

tally tested during 25 independent runs. Even when the PI controller, the685

MRAC and the GPIRC have deterministic behavior, it is necessary to per-

form several runs over them since any experimental test implicitly includes

the stochastic behavior of the input and output signals due to noised electri-

cal measurements.

First, the response characteristics based on the raise time (RT ), over-690

shoot (OS), settling time (ST ), and steady-state error (SSE) are evaluated

for the 25 independent runs of each controller. Table XIII shows the mini-

43



Figure 7: Block diagram of the closed loop system.
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Figure 8: Real-time implementation diagram.
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mum, maximum, and mean values of such characteristics. According to this

table, the proposal ACS-IDE has an outstanding performance regarding the

RT and SSE indicators when compared with the other control alternatives,695

i.e., the ACS-IDE can reach the speed profile in a shorter time and is less

susceptible to steady-state errors. Concerning the OS indicator, the MRAC

can reach the speed profile without exceeding it abruptly, but the above fact

is contrasted with the larger time required to reach the steady-state denoted

by ST . Regarding the ST , the PI controller and the ACS-IDE have the most700

competitive performance.

Then, the ISE, IAE and ITAE measures are considered to make compar-

isons in order to show the advantages of the proposal. These control mea-

sures are obtained in the interval of time t ∈ [3.5, 10]s in order to perform

fair comparisons. This interval is proposed according to the time required705

for the MRAC to regulate the DC motor speed to the reference signal.

Tables XIV, XV and XVI show the values of the ISE, IAE and ITAE,

respectively. The ISE column in Table XIV shows that the ACS-IDE has a

significantly better performance than the rest of alternatives, i.e., the ACS-

IDE is the least susceptible to large errors. Taking into account the values710

of IAE and ITAE columns in Tables XV and XVI respectively, the perfor-

mances of the ACS-IDE and the MRAC are both competitive and are over

the performance of the PI controller and the GPIRC, then those controllers

produce a less oscillating speed signal along all the experiment execution

time.715

The speed behavior of the best run of the ACS-IDE, the PI controller,

the MRAC and the GPIRC according to the ISE indicator, is observed in
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Fig. 9. The error band of all alternatives does not surpass the 0.2% from the

reference signal when the motor is not disturbed and does not surpass the 4%

when the disk is added. In Fig. 9, the ACS-IDE, and MRAC are better than720

the PI controller and the GPIRC for the proposed experimental conditions.

The error signal, obtained by the ACS-IDE and the MRAC, is almost equally

bounded when the system is disturbed. Nevertheless, the error signal of the

ACS-IDE is attenuated, i.e., the motor speed is closer to the reference signal

in several instants during the experiment execution, so this proposal provides725

a better parameter adaptation. On the other hand, all control alternatives

have a very similar energy consumption.

Although the previous descriptive parametric statistical analysis presents

a summary of the obtained data, the use of non-parametric statistics is nec-

essary since the experiment presents some unavoidable conditions such as730

state noise and mechanical vibrations due to the disturbance mechanism

movements when adding the iron disk. For this reason, the non-parametric

test of Wilcoxon is applied by pairs to the distributions of the ISE, IAE and

ITAE measures of the 25 independent runs of the ACS-IDE, the PI controller,

the MRAC and the GPIRC. Tables XVII, XVIII and XIX show the results735

of each Wilcoxon test where the winner alternative of each pair is shown

in boldface. Table XX contains the overall wins of the performed Wilcoxon

tests. As it can be seen in Table XX, the ACS-IDE alternative is the most

promising when the ISE, the IAE, and the ITAE performance control mea-

sures are considered. The next promising control alternatives are the MRAC,740

the PI controller and the GPIRC in this order.

The statistical evidence over the experimental tests presented in this sub-
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Figure 9: Speed behavior of the best runs in experimentation of the proposed control

strategy based on the IDE, the PI controller, the MRAC and the GPIRC according to the

ISE indicator. The speed regulation error (e) is shown in the subplots.
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section, reveals that the ACS-IDE is capable of dealing with real paramet-

ric uncertainties and presents performance advantages over some classical-

advanced control approaches.745

5. Conclusion and future work

In this work, an adaptive control strategy based on an improved version

of DE (ACS-IDE) is proposed for the highly efficient speed regulation of the

DC motor when there are parametric uncertainties. For this strategy, an

optimization problem is stated and solved online at each sampling time by750

IDE to obtain an optimal set of parameters that are used in calculating the

control signal. ACS-IDE includes a mechanism that promotes the exploration

in the early generations and takes advantage of the exploitation power of the

DE/best class in the last generations of the algorithm.

The following conclusions can be drawn based on the results in simulation755

and experimentation with a real prototype:

• The effectiveness and stability of the proposed bio-inspired adaptive

control strategy is proven from control theory and then validated in sim-

ulation and experimentation through a descriptive and non-parametric

statistical analysis.760

• The proposed ACS-IDE shows to have a promising performance in the

speed control of the DC motor subject to uncertainties in simulation

and experimentation.

• Statistical evidence of the simulation test reveals that ACS-IDE per-

forms better than several strategies based on five different best vari-765
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ants of DE (ACS-DE/best/1/bin, ACS-DE/current-to-best/1, ACS-

DE/best/1/exp, ACS-DE/current-to-best/1/bin, and ACS-DE/current-

to-best/ 1/exp) and two well-known meta-heuristic optimizers, the GA

and PSO (ACS-GA and ACS-PSO). The above performance improve-

ment of ACS-IDE is attributed to the balanced trade-off between the770

exploration and exploitation capabilities of IDE, while in the rest of

the adopted optimizers, one capability stands out from the other. The

lack of exploration of the five variants of DE and the PSO make these

optimizers more susceptible to converge or stuck in local solutions. In

the case of the GA, the lack of exploitation slows the search for fine775

promising solutions, i.e., more objective function evaluations may be

required to achieve better performance.

• Results in simulation also reveal an outstanding performance of ACS-

IDE concerning three classical-advanced controllers (the PI controller,

MRAC and GPIRC), especially when the motor parameters present780

large discontinuous uncertainties which reduce the number of local so-

lutions to the optimization problem and facilitate the search for good

solutions with IDE.

• The proposed ACS-IDE is almost equally competitive to the three

classical-advanced controllers in experimentation when there are no un-785

certainties, but when the DC motor is abruptly disturbed (by adding

the iron disk), the benefits in performance when using ACS-IDE can be

observed through a descriptive and non-parametric statistical analysis.

• Some significant advantages of the ACS-IDE include its faster adapta-
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tion capability under uncertainties, the short time of△w to get the first790

set of suitable control parameters and the possibility to compensate the

variations of unknown parametric uncertainties.

• The main difficulty in the use of ACS-IDE is the statement of the

bounds of the search space and the tuning of the gains Kacs
p and Kacs

d .

In order to select the correct parameter bounds in ACS-IDE, it is nec-795

essary to take into account the nominal values of the DC motor param-

eters. Since this information is not always available, it is required to

perform an initial identification process. A similar situation is observed

with the gains Kacs
p and Kacs

d , whose values are related to the bounds

of the motor parameters.800

As the future work, a multi-objective problem could be stated consid-

ering several performance indicators to satisfy different control engineering

necessities. Moreover, a study of multi-objective optimizers from different

search approaches based on Pareto dominance, decomposition and perfor-

mance metrics in the adaptive control problem is suggested. A study of805

high-performance computing techniques to increase the efficiency of the IDE

optimizer for its application in the control of different complex dynamic sys-

tems is also proposed.

Acknowledgments

The authors acknowledge the support of the Secretaŕıa de Investigación810
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Table VIII: Results of the Wilcoxon test over the ISE values achieved in simulation by the

proposed adaptive control strategies.

Test R+ R− p− value

ACS-DE/best/1/bin vs ACS-DE/best/1/exp 3494 1556 0.0008

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1 2685 2365 0.5849

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1/bin 4307 743 <0.0001

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1/exp 4542 508 <0.0001

ACS-DE/best/1/bin vs ACS-GA 5050 0 <0.0001

ACS-DE/best/1/bin vs ACS-IDE 1131 3919 <0.0001

ACS-DE/best/1/bin vs ACS-PSO 5007 43 <0.0001

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1 1760 3290 0.0081

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1/bin 3328 1722 0.0054

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1/exp 3325 1725 0.0056

ACS-DE/best/1/exp vs ACS-GA 3893 1157 <0.0001

ACS-DE/best/1/exp vs ACS-IDE 613 4437 <0.0001

ACS-DE/best/1/exp vs ACS-PSO 4242 808 <0.0001

ACS-DE/current-to-best/1 vs ACS-DE/current-to-best/1/bin 4209 841 <0.0001

ACS-DE/current-to-best/1 vs ACS-DE/current-to-best/1/exp 4420 630 <0.0001

ACS-DE/current-to-best/1 vs ACS-GA 4961 89 <0.0001

ACS-DE/current-to-best/1 vs ACS-IDE 973 4077 <0.0001

ACS-DE/current-to-best/1 vs ACS-PSO 4958 92 <0.0001

ACS-DE/current-to-best/1/bin vs ACS-DE/current-to-best/1/exp 2137 2913 0.1835

ACS-DE/current-to-best/1/bin vs ACS-GA 2575 2475 0.8654

ACS-DE/current-to-best/1/bin vs ACS-IDE 268 4782 <0.0001

ACS-DE/current-to-best/1/bin vs ACS-PSO 3517 1533 0.0005

ACS-DE/current-to-best/1/exp vs ACS-GA 3089 1961 0.0524

ACS-DE/current-to-best/1/exp vs ACS-IDE 318 4732 <0.0001

ACS-DE/current-to-best/1/exp vs ACS-PSO 3867 1183 <0.0001

ACS-GA vs ACS-IDE 3 5047 <0.0001

ACS-GA vs ACS-PSO 3287 1763 0.0084

ACS-IDE vs ACS-PSO 5038 12 <0.0001
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Table IX: Results of the Wilcoxon test over the IAE values achieved in simulation by the

proposed adaptive control strategies.

Test R+ R− p− value

ACS-DE/best/1/bin vs ACS-DE/best/1/exp 3526 1524 0.0004

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1 2878 2172 0.2255

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1/bin 4251 799 <0.0001

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1/exp 4460 590 <0.0001

ACS-DE/best/1/bin vs ACS-GA 5050 0 <0.0001

ACS-DE/best/1/bin vs ACS-IDE 65 4985 <0.0001

ACS-DE/best/1/bin vs ACS-PSO 5042 8 <0.0001

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1 1825 3225 0.0161

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1/bin 3219 1831 0.01665

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1/exp 3342.5 1707.5 0.0049

ACS-DE/best/1/exp vs ACS-GA 5050 0 <0.0001

ACS-DE/best/1/exp vs ACS-IDE 59 4991 <0.0001

ACS-DE/best/1/exp vs ACS-PSO 4855 195 <0.0001

ACS-DE/current-to-best/1 vs ACS-DE/current-to-best/1/bin 4015 1035 <0.0001

ACS-DE/current-to-best/1 vs ACS-DE/current-to-best/1/exp 4361 689 <0.0001

ACS-DE/current-to-best/1 vs ACS-GA 5050 0 <0.0001

ACS-DE/current-to-best/1 vs ACS-IDE 77 4973 <0.0001

ACS-DE/current-to-best/1 vs ACS-PSO 5039 11 <0.0001

ACS-DE/current-to-best/1/bin vs ACS-DE/current-to-best/1/exp 2617 2433 0.7540

ACS-DE/current-to-best/1/bin vs ACS-GA 5048 2 <0.0001

ACS-DE/current-to-best/1/bin vs ACS-IDE 1 5049 <0.0001

ACS-DE/current-to-best/1/bin vs ACS-PSO 4690 360 <0.0001

ACS-DE/current-to-best/1/exp vs ACS-GA 5046 4 <0.0001

ACS-DE/current-to-best/1/exp vs ACS-IDE 13 5037 <0.0001

ACS-DE/current-to-best/1/exp vs ACS-PSO 4717 333 <0.0001

ACS-GA vs ACS-IDE 0 5050 <0.0001

ACS-GA vs ACS-PSO 1728 3322 0.0061

ACS-IDE vs ACS-PSO 5050 0 <0.0001
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Table X: Results of the Wilcoxon test over the ITAE values achieved in simulation by the

proposed adaptive control strategies.

Test R+ R− p− value

ACS-DE/best/1/bin vs ACS-DE/best/1/exp 3473 1577 0.0011

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1 2969.5 1980.5 0.0846

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1/bin 4304.5 745.5 <0.0001

ACS-DE/best/1/bin vs ACS-DE/current-to-best/1/exp 4655.5 394.5 <0.0001

ACS-DE/best/1/bin vs ACS-GA 5050 0 <0.0001

ACS-DE/best/1/bin vs ACS-IDE 124 4926 <0.0001

ACS-DE/best/1/bin vs ACS-PSO 5047 3 <0.0001

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1 1980.5 3069.5 0.06142

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1/bin 3361 1689 0.0037

ACS-DE/best/1/exp vs ACS-DE/current-to-best/1/exp 3535.5 1514.5 0.0005

ACS-DE/best/1/exp vs ACS-GA 5022 28 <0.0001

ACS-DE/best/1/exp vs ACS-IDE 96 4954 <0.0001

ACS-DE/best/1/exp vs ACS-PSO 4619 431 <0.0001

ACS-DE/current-to-best/1 vs ACS-DE/current-to-best/1/bin 4107 943 <0.0001

ACS-DE/current-to-best/1 vs ACS-DE/current-to-best/1/exp 4620 430 <0.0001

ACS-DE/current-to-best/1 vs ACS-GA 5050 0 <0.0001

ACS-DE/current-to-best/1 vs ACS-IDE 133 4917 <0.0001

ACS-DE/current-to-best/1 vs ACS-PSO 5030 20 <0.0001

ACS-DE/current-to-best/1/bin vs ACS-DE/current-to-best/1/exp 2494 2556 0.9164

ACS-DE/current-to-best/1/bin vs ACS-GA 4802.5 247.5 <0.0001

ACS-DE/current-to-best/1/bin vs ACS-IDE 21 5029 <0.0001

ACS-DE/current-to-best/1/bin vs ACS-PSO 4291 759 <0.0001

ACS-DE/current-to-best/1/exp vs ACS-GA 4865 185 <0.0001

ACS-DE/current-to-best/1/exp vs ACS-IDE 33 5017 <0.0001

ACS-DE/current-to-best/1/exp vs ACS-PSO 4429 621 <0.0001

ACS-GA vs ACS-IDE 0 5050 <0.0001

ACS-GA vs ACS-PSO 2215 2835 0.2886

ACS-IDE vs ACS-PSO 5050 0 <0.0001
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Table XI: Overall wins of the Wilcoxon test for the proposed adaptive control strategies

in simulation.

Adaptive control strategy alternative ISE IAE ITAE Total

ACS-DE/best/1/bin 5 5 5 15

ACS-DE/best/1/exp 4 4 4 12

ACS-DE/current-to-best/1 5 5 4 14

ACS-DE/current-to-best/1/bin 1 2 2 5

ACS-DE/current-to-best/1/exp 1 2 2 5

ACS-IDE 7 7 7 21

ACS-GA 1 0 0 1

ACS-PSO 0 1 0 1

Table XII: Parameter bounds.

Variable min max

θ̄0 0.1 5.0

θ̄1 1.0× 10−2 5.0× 10−2

θ̄2 1.0× 10−4 5.0× 10−4
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Table XIII: Other control performance measurements.

Measurement ACS-IDE PI MRAC GPIRC

RTmin 0.035 0.060 1.500 0.075

RTmax 0.050 0.060 1.585 0.080

RT 0.036 0.060 1.537 0.075

OSmin 3.224 8.600 0.393 8.553

OSmax 8.232 9.442 0.693 10.297

OS 5.896 9.108 0.495 9.597

STmin 0.300 0.310 2.705 0.465

STmax 0.440 0.325 2.805 0.495

ST 0.353 0.316 2.757 0.482

SSEmin 0.105 0.130 0.154 0.133

SSEmax 0.142 0.148 0.171 0.158

SSE 0.124 0.136 0.161 0.145

Table XIV: ISE values for the experimental tests of the proposed control strategy based

on the IDE, the PI controller, the MRAC and the GPIRC.

Control system alternative ISEbest ISEworst ISE std(ISE)

ACS-IDE 0.198 0.275 0.244 0.023

PI 0.349 0.500 0.420 0.045

MRAC 0.231 0.360 0.296 0.035

GPIRC 0.400 0.736 0.540 0.093
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Table XV: IAE values for the experimental tests of the proposed control strategy based

on the IDE, the PI controller, the MRAC and the GPIRC.

Control system alternative IAEbest IAEworst IAE std(IAE)

ACS-IDE 0.760 0.949 0.833 0.050

PI 1.012 1.185 1.071 0.037

MRAC 0.821 0.971 0.875 0.036

GPIRC 1.013 1.249 1.127 0.063

Table XVI: ITAE values for the experimental tests of the proposed control strategy based

on the IDE, the PI controller, the MRAC and the GPIRC.

Control system alternative ITAEbest ITAEworst ITAE std(ITAE)

ACS-IDE 4.644 5.986 5.216 0.323

PI 6.131 7.177 6.508 0.245

MRAC 5.177 5.976 5.441 0.202

GPIRC 6.144 7.275 6.689 0.357
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Table XVII: Results of the Wilcoxon test over the ISE values achieved in experimentation

by the proposed control strategy based on the IDE, the PI controller, the MRAC and the

GPIRC.

Test R+ R− p− value

MRAC vs PI 325 0 <0.0001

MRAC vs ACS-IDE 4 321 <0.0001

MRAC vs GPIRC 325 0 <0.0001

PI vs ACS-IDE 0 325 <0.0001

PI vs GPIRC 314 11 <0.0001

ACS-IDE vs GPIRC 325 0 <0.0001

Table XVIII: Results of the Wilcoxon test over the IAE values achieved in experimentation

by the proposed control strategy based on the IDE, the PI controller, the MRAC and the

GPIRC.

Test R+ R− p− value

MRAC vs PI 325 0 <0.0001

MRAC vs ACS-IDE 58 267 0.0037

MRAC vs GPIRC 325 0 <0.0001

PI vs ACS-IDE 0 325 <0.0001

PI vs GPIRC 289 36 0.0002

ACS-IDE vs GPIRC 325 0 <0.0001
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Table XIX: Results of the Wilcoxon test over the ITAE values achieved in experimentation

by the proposed control strategy based on the IDE, the PI controller, the MRAC and the

GPIRC.

Test R+ R− p− value

MRAC vs PI 325 0 <0.0001

MRAC vs ACS-IDE 60 265 0.0046

MRAC vs GPIRC 325 0 <0.0001

PI vs ACS-IDE 0 325 <0.0001

PI vs GPIRC 255 70 0.0114

ACS-IDE vs GPIRC 325 0 <0.0001

Table XX: Overall wins of the Wilcoxon test for the proposed control strategy based on

the IDE, the PI controller, the MRAC and the GPIRC in experimentation.

Control system alternative ISE IAE ITAE Total

ACS-IDE 3 3 3 9

PI 1 1 1 3

MRAC 2 2 2 6

GPIRC 0 0 0 0
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