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Abstract

The adaptively design of the control system for a direct current motor is solved

by proposing differential evolution based control adaptation (DEBAC). From the

comparison of two differential evolution variants with two constraint-handling tech-

niques, a competitive algorithm based on arithmetic crossover and a set of feasibility

rules is obtained. In addition, a comparison of such competitive differential evolution

variant against a traditional control technique considering stabilization and tracking

is provided. Based on the empirical results, the proposed approach outperforms the

traditional method by using three well-known performance indices for closed-loop

control, confirming that DEBAC is a valid alternative to control the direct current

motor under parametric uncertainties.
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List of acronyms

The paper adopts the following acronyms:
EAs Evolutionary algorithms

CTEAs Control tuning using EAs

d.o.f. Degree of freedom

DOP Dynamic optimization problem

DE Differential evolution

DC Direct Current

PID controller Proportional Integral and Derivative controller

DEBAC Differential evolution based adaptive control

CHM Constraint-handling method

iRace package Iterated Racing for Automatic Algorithm Configuration package

TVP Time-variant parameters

TV P1 Time-variant parameters that change its nominal value by 10% in the time interval t ∈ [2, 4]s

TV P2 Time-variant parameters that change its nominal value by 10% in the time interval t ∈ [0, 4]s

EP Exterior penalization

DF Deb’s feasibility

DEC2B-EP DE/Current-to-best/ with EP

DEB1B-EP DE/Best/1/bin/ with EP

DEC2B-DF DE/Current-to-best/ with DF

DEB1B-DF DE/Best/1/bin/ with DF

RCP Regulation control problem

TCP Tracking control problem

RCP-TVP1 Regulation control problem with TVP1 parameter

RCP-TVP2 Regulation control problem with TVP2 parameter

TCP-TVP1 Tracking control problem with TVP1 parameter

TCP-TVP2 Tracking control problem with TVP2 parameter

NomP Nominal parameters

PIC Proportional-Integral control

IAE Integral Absolute Error

ITAE Integral Time-weighted Absolute Error

ISE Integral Squared Error

S.D. Standard Deviation

1. Introduction

A high performance control system in the actuators of an electro-mechanical

system is a crucial factor to be considered in several applications. The Direct Current

(DC) motor is the most used actuator for electromechanical systems, such as robot

manipulator [27], in xy table [28], etc. The study of control strategies in the DC

motor with a high precision and high accuracy has always been of interest [15, 19].

One important issue in the tuning of control systems is to compensate the uncer-

tain parameters in electromechanical systems when those are used in tasks, such as,
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handling different loads in the robot end-effector, polishing rough surfaces or when

the system physical parameters are affected by temperature changes, system mass

variation (vehicles), wide operating range, etc.

Although advanced control system theory [2, 26, 11, 21] and tuning strategies

were developed to improve the controller performance, in the last years evolutionary

algorithms (EAs) [8], whose inspiration is taken from the natural evolution theory

and the survival of the fittest, have been used as another alternative for controller

tuning [9, 23]. One of the EA advantages is that they do not require gradient infor-

mation and work as black-box optimizers (i.e., they are independent of the features

of the problem to be solved). EAs have showed a very competitive performance

when solving complex optimization problems [25], as those related with the auto-

matic control area, mainly because their global search capabilities and their ability

to deal with non-linearity and discontinuous problems. In addition, they are easier

to implement than advanced control tuning. EAs were designed to deal with uncon-

strained search spaces, then a constraint-handling technique must be added to it so as

to consider feasibility information in the search bias [16]. However, the choice of the

correct constraint-handler is an open problem [16] in the control tuning using EAs

(CTEAs). Several researches in CTEAs have been used different ways of handling

constraints. In [24], a differential evolution (DE) variant DE-curent-to-rand/2 is con-

sidered to obtain the proportional gain, the integral time, the derivative time and

the parameter of the derivative filter to the Proportional-Integral-Derivative (PID)

control system for a first order system with delay. One performance function related

to the disturbance rejection is chosen and three constraints are set (the robustness of

the closed-loop system, the maximum limits of the control signal and the sensitivity

under noise signals). In order to handle the constraints, the performance function

evaluation changes to the sum of the constraint violation if the obtained solution is
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unfeasible. In [1] a multi-objective genetic algorithm (MOGA) is used to select the

optimum control gains for the desired drug dose, considering both, the number of

proliferating cells at the end of the cancer chemotherapy treatment and the aver-

age level of toxicity over the whole period of treatment, as performance functions.

The stability of the closed-loop system, maximum toxicity and drug concentration

at tumor site are set as constraints in the optimization process. Those constraints

are included into the performance function as penalty functions in order to handle

such constraints in the MOGA. Another approach to handle the constraints in the

CTEAs is to consider them as performance functions [10] where a multi-objective

optimization problem is stated.

Some other works include EAs and other nature-inspired algorithms in the adap-

tive control schemes. In [13] an adaptive particle swarm optimization (APSO) algo-

rithm is proposed to adaptively select the optimum the elements of state weighting

matrix Q and the input weighting matrix R of linear quadratic regulator (LQR)

control for the tracking of a two degrees of freedom (d.o.f.) laboratory helicopter.

Adaptive inertia weight factor (AIWF) is introduced in the velocity update equation

of PSO and a feed forward controller linearizes the closed-loop system in order to

solve an unconstrained optimization problem with the proposal. The APSO algo-

rithm significantly improves the control performance compared with the conventional

PSO. In [29] the adaptation of the rule base parameters, member function parame-

ters and scaling factors of a fuzzy controller are obtained by stated an unconstrained

optimization problem and by using a real-number coding genetic algorithm. This

approach is applied to a permanent magnet synchronous motor. The comparison

between the performance of the bacterial foraging algorithm and genetic algorithm

is carried out in [4] for the identification and control of a DC motor. The results

indicate that both algorithms have a similar performance in the error velocity but
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the main difference is the time consuming for the dynamic performance.

From the literature review, it is clear that EAs are a valid option to deal with

complex problems of the automatic control area to efficiently tune the control sys-

tem. On the other hand, they are initial applications in this particular area of one

of the most recent EAs known as differential evolution (DE), whose usage to solve

complex optimization problems has significantly increased due to its good perfor-

mance and simplicity [6]. However, to the best of the authors’ knowledge, there is a

lack of information about the performance behavior of the constraint-handling into

the EAs for the optimal control tuning with parametric uncertainties. The research

on the type of DE variant which is more suitable to deal with those constrained

search spaces of automatic control instances and also investigations about the most

convenient constraint-handling technique are still scarce. Therefore, the main con-

tribution of this research is two-fold: i) The proposal of an alternative approach

called DEBAC to control the velocity of the DC motor under parametric uncertain-

ties based on an evolutionary adaptive control, and ii) the empirical analysis of the

most representative DE variants for faster convergence coupled with two competitive

constraint-handling techniques is carried out in order to get information about their

performance on the velocity control of the DC motor under parametric uncertainties.

From the above mentioned, a DE-based adaptive control (DEBAC) for a DC mo-

tor is proposed by the formal statement of a dynamic optimization problem (DOP)

and its solution is given by comparing the performance of two DE variants based on

arithmetic crossover and discrete crossover, with two different constraint-handling

technique. The proposed DEBAC on-line estimates the control parameters to com-

pensate the non-linear effect of parametric uncertainties in the velocity control of a

DC motor. Furthermore, a comparison of the most competitive DE variant against

a traditional control technique is also presented.
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The rest of the paper is organized as follows: In Section 2, the DC motor dynamic

model is presented. The dynamic optimization problem for the on-line control pa-

rameter estimation is stated in Section 3. A brief introduction to DE is included in

Section 4. In Section 5, the comparative analysis of those DE variants in the partic-

ular DOP and the comparison against a traditional control technique are discussed.

Finally, in Section 6 conclusions are given and the future work is proposed.

2. Dynamic model and velocity control system of the DC motor

The electromechanical equations related to the DC motor are given in (1) and

(2) and those can be derived by using the Kirchhoff’s voltage law and Newton’s 2nd

law, respectively. The equation (1) is the electrical circuit equation of armature and

the equation (2) is the mechanical equation of DC motor, for more details consult

[5], [12].

La
dia
dt

+Raia + keq̇m = Vin (1)

Jo
dq̇m
dt

+ boq̇m + τL = kmia (2)

Both previous equations are named as the dynamic model of the DC motor where

Vin is the armature voltage, Ra is the armature resistance, La is the armature in-

ductance, ke is the back electromotive constant, ia is the armature current, b0 is the

viscous friction coefficient of the motor shaft bearing, J0 is the inertia torque of the

motor rotor, km is the torque constant, τL is the load torque and qm, q̇m, q̈m are the

position, velocity and acceleration of the rotor, respectively.

Let the state variable vector x = [qm, q̇m, ia]
T and the input signal u = Vin, and

considers the parameters of the DC motor as p = [p1 = b0
J0
, p2 = km

J0
, p3 = ke

La
, p4 =
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Ra

La
, p5 = 1

La
, p6 = τL

J0
]T then, the dynamic model of the DC motor in the state variable

vector x can be expressed in state-variable form ẋ = f (x(t), u(t), p) as in (3).


ẋ1

ẋ2

ẋ3

 =


0 1 0

0 −p1 p2

0 −p3 −p4



x1

x2

x3

−


0

p6

0

+


0

0

p5

u (3)

Considering the coordinate change x̃1 = x2, x̃2 = −p1x2 + p2x3− p6, the dynamic

system (3) can be expressed as in (4)-(5), where x̃3 = x̃2+p6+p1x̃1

p2
.

·
x̃1 = x̃2 (4)
·
x̃2 = p2p5u+ x̃1(p2p3 − p2

1) + x̃3p2(p1 + p4) (5)

From (4)-(5), the inverse dynamic control u(t) = f̃(x(t), p̄) is proposed to regulate

the velocity of the DC motor and it is given in (6), where e = wr − x2(t) is the error

between the desired angular velocity wr, and the current angular velocity x2(t),

ė = ẇr − ẋ2(t) is the error between the desired angular acceleration ẇr and the

current angular acceleration ẋ2(t), ẅr is the rate of change of the desired angular

acceleration and kp, kd are the control gains.

u =
ẅr + kpe+ kdė+ p̄1p̄2x3 − p̄2

1x2 + p̄1p̄6

p̄2p̄5

+
p̄3x2

p̄5

+
p̄4x3

p̄5

(6)

The vector p̄ will be the design variable vector in the control system (6). It is

considered that the current parameter vector p(t) in the dynamic model of the DC

motor (3) dynamically changes its value affecting the dynamic behavior of the DC

motor. Hence, the design variable vector in the control system must be estimated
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at each sampling time ∆t (online control parameter estimation) in order to compen-

sate the non-linearity effects in the DC motor due to the variations of the current

parameter vector p. In this paper the design variable vector in the control system

p̄(t) is obtained by proposing and solving a dynamic optimization problem (DOP).

Differential evolution variants are used to solve the DOP.

3. Dynamic optimization problem for the online control parameter esti-

mation

Considering that the current parameter vector p(t) = [p1(t), p2(t), p3(t), p4(t), p5(t),

p6(t)]T in the dynamic model of the DC motor is not constant and its value varies

according to the changes in the current time variable t ∈ [0,∆t, 2∆t, ..., tf ]. Then,

the dynamic optimization problem consists in finding the control design variable vec-

tor p̄(t) for the control system (6) that compensates the non-linear behavior of the

DC motor in order to track the desired velocity, subject to the motor dynamics, the

estimated dynamics of the DC motor and bounds in the input control signal. The

term tf is the final time and ∆t is the sampling time. In the next subsections the

performance function and constraints are presented.

3.1. Performance function

Let the time space Ω as Ω = {λ ∈ R | λ ∈ [t1, tn] ⊆ t, t1 = tn − ∆w,∆w >

∆t, tn ≥ ∆w, tn > t1} and the estimated dynamics of the DC motor as ˙̄x =

f̄ (x̄(t), u(t), p̄). The performance function (7) is considered as the squared differ-

ence between the estimated state vector of the estimated DC motor x̄ and the state

vector of the simulated DC motor x when t ∈ Ω. The current time must fulfill t ≥ tn

in order to evaluate the performance function. The back time interval is represented

as ∆w ∈ R.
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J =

∫
t∈Ω

(x1(t)− x̄1(t))2dt+

∫
t∈Ω

(x2(t)− x̄2(t))2dt+

∫
t∈Ω

(x3(t)− x̄3(t))2dt (7)

3.2. Constraints

The dynamic constraints involve both the dynamic model of the DC motor (8)

and the estimated one. Those dynamic constraints consist of differential equations

that describe the dynamic behavior of the DC motor, such as mechanical-electrical

energy balances that ensure the physical relations.

The estimated dynamics of the DC motor has the same form presented in (3)

with the difference that the vector p is changed by p̄ and the current state vector x is

changed by the estimated state vector x̄. The estimated dynamics of the DC motor

is included to know the dynamic behavior of the DC motor with different design

variable vector p̄(t) and so, to compensate the effects provided by the parameter p.

In order to solve the differential equations in (8) and in (9), the Euler method is used

to obtain the state vector x and x̄, respectively. An integration step of ∆t is selected

in both cases. The initial condition x(0) = [0, 0, 0]T for the dynamic equation (8) is

set with a final time tf . Furthermore, the state vector x̄(t1) = x(t1) is chosen as the

initial condition for the dynamic equation (9) with a final time tn.

·
x(t) = f(x(t), u(t), p) (8)

·
x̄(t) = f(x̄(t), u(t), p̄)

∣∣∣
t∈Ω

(9)

The control system presents physical limits due to the power system, hence the

inequality constraints in the control signal presented in (10)-(11) are included in

order to bound the applied voltage in the DC motor.
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g1 : u(tn)− uMAX ≤ 0 (10)

g2 : uMIN − u(tn) ≤ 0 (11)

The last inequality constraint involves the design variable vector bounds and

those are given in (12)-(13), where p̄MIN and p̄MAX are the lower and upper limits

in the design variable vector p̄.

g3 : p̄− p̄MAX ≤ 0 (12)

g4 : p̄MIN − p̄ ≤ 0 (13)

3.3. Dynamic optimization problem statement

In Fig. 1 the complete process for obtaining the control parameter vector p̄ is

shown. The closed-loop system is marked in dashed line. The optimization process

requires the knowledge of the state vector x(t) in the time interval t ∈ [t1, tn]. At

each time t = tn, the performance function is evaluated. The required information is

obtained from the state vector x(t) ∈ Ω and from the differential equation solution

of the estimated state vector x̄ ∈ Ω considering the initial condition as x(t1).

The dynamic optimization problem consists in finding the optimum control design

variable vector p̄∗ = [p̄1
∗, p̄2

∗, p̄3
∗, p̄4

∗, p̄5
∗, p̄6

∗]T that minimizes (7), i.e., the error

between the state vector x and the estimated state vector x̄ such that p̄∗ compensate

the non-linear effects on the parameter vector p of the DC motor, subject to the DC

motor dynamics (8), the estimated DC motor dynamics (9), bounds in the control

signal (10)-(11) and bounds in the design variable vector (12)-(13). Hence, the

general formulation of the dynamic optimization problem is stated as in (14)-(20).
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Figure 1: Schematic diagram of the dynamic optimization process for the on-line control parameter

estimation.

Min
p̄∗

J (14)

Subject to:

dx

dt
= f(x(t), u(t), p), x(0) = [0, 0, 0]T (15)

dx̄

dt
= f(x̄(t), u(t), p̄)

∣∣∣∣
t∈Ω

, x̄(t1) = x(t1) (16)

g1(x(tn), p̄) ≤ 0 (17)

g2(x(tn), p̄) ≤ 0 (18)

g3(p̄) ≤ 0 (19)

g4(p̄) ≤ 0 (20)
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4. Differential evolution

Differential evolution [22] is an EA proposed by Storn and Price to solve op-

timization problem with floating-point parameters [22]. A population of NP po-

tential solutions (where each potential solution is a control design variable vector

p(t) = [p1(t), p2(t), p3(t), p4(t), p5(t), p6(t)]T ) called just vectors is generated at ran-

dom with uniform distribution. Each D-dimensional vector i in the population

at generation G, ~xi,G = [xi,1,G, xi,2,G, ..., xi,D,G]T , known as target vector, is com-

bined with a mutant vector ~vi,G = [vi,1,G, vi,2,G, ..., vi,D,G]T to generate a trial (child)

vector ~ui,G = [ui,1,G, ui,2,G, ..., ui,D,G]T . The mutant vector ~vi,G is generated by the

so-called differential mutation, which requires three vectors ~xr0,G, ~xr1,G, and ~xr2,G,

r0 6= r1 6= r2 6= i, chosen at random from the current population. Such process is

detailed in Equation (21):

~vi,G = ~xr0,G + F (~xr1,G − ~xr2,G) (21)

where F > 0 is a scale factor for the difference vectors ~xr1,G and ~xr2,G. Such difference

determines a search direction which is added to the base vector ~xr0,G. After that,

the crossover operator is applied to the target vector ~xi,G and the mutant vector ~vi,G

as indicated in Equation (22)

ui,j,G =

vi,j,G if(randj ≤ CR) or (j = Jrand)

xi,j,G otherwise

(22)

where 0 ≤ CR ≤ 1 is the crossover parameter which determines how similar the trial

vector ~ui,G will be with respect to the mutant vector ~vi,G. Jrand ∈ [1, D] is a random

integer number which assures the trial vector to get at least one value copied from

the mutant vector to prevent target vector copies.
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As a final step, the target and trial vectors are compared based on fitness, and

the best of them will remain in the population for the next generation, as shown

in Equation (23), where minimization is assumed. The complete DE pseudocode is

presented in Algorithm 1.

~xi,G+1 =

~ui,G if(f(~ui,G) ≤ f(~xi,G)),

~xi,G otherwise

(23)

The DE variant already described is known as DE/rand/1/bin, where “DE”

stands for differential evolution, “rand” indicates the criterion to choose the base

vector ~xr0,G (at random), “1” means the number of differences (one based on two

vectors) and “bin” refers to the type of crossover operator (binomial in this case

as shown in Equation (22)). However, there are other variants like DE/best/1/bin,

where the only difference is that the base vector is the best solution in the current

population ~xbest,G. The corresponding mutant vector calculation is detailed in Equa-

tion (24). After that, the binomial crossover in Equation (22) is applied in the same

way as in DE/rand/1/bin.

~vi,G = ~xbest,G + F (~xr1,G − ~xr2,G) (24)

There are other DE variants, also based on the best vector in the population as the

base vector, like DE/current-to-best/1, where an arithmetic crossover is used instead

of a discrete recombination like binomial crossover. The formula for this variant is

detailed in Equation (25).

~ui,G = ~xi,G +K(~xbest,G − ~xi,G) + F (~xr1,G − ~xr2,G) (25)

It is important to note that the trial vector ~ui,G is directly generated in Equation
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Algorithm 1 Differential Evolution algorithm
1: G=0

2: Create a randomly-generated initial population ~xi,G ∀i, i = 1, . . . , NP

3: Evaluate f(~xi,G) ∀i, i = 1, . . . , NP

4: for G← 1 to MAX GEN do

5: for i← 1 to NP do

6: Randomly select r0 6= r1 6= r2 6= i

7: Jrand = randint[1, D]

8: for j ← 1 to D do

9: if randj ≤ Cr Or j = Jrand then

10: ui,j,G = xr0,j,G + F (xr1,j,G − xr2,j,G)

11: else

12: ui,j,G = xi,j,G

13: end if

14: end for

15: if f(~ui,G) ≤ f(~xi,G) then

16: ~xi,G+1 = ~ui,G

17: else

18: ~xi,G+1 = ~xi,G

19: end if

20: end for

21: end for
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(25) (i.e., no mutant vector ~vi,G is considered in this case). Therefore, the binomial

crossover is not adopted for DE/current-to-best/1 because the recombination and

mutation are carried out in the same Equation (25).

Specialized literature suggests that those DE variants whose base vector is the

best solution in the population provide a faster convergence than those where the

base vector is chosen at random [18, 17]. Based on such behavior and also on the

fact that the DE variants in this research will operate on-line, DE/best/1/bin and

DE/current-to-best/1 are the variants of interest. Details of an in-depth analysis on

other DE variants in constrained search spaces can be found in [17].

Recalling from Section 1, DE, as all EAs, were not designed to deal with con-

strained search spaces. A recent review of the state-of-the-art in nature-inspired

constrained optimization, showed that DE is one of the most popular EAs adopted

to solve constrained optimization problems [16]. Furthermore, two of the most com-

petitive constraint-handling techniques nowadays are the exterior penalty functions

[3] and the set of feasibility rules [16]. Therefore, they are adopted in this study.

The penalized fitness function J̄ of a vector (~xi,G) is given in Equation (26), where

µ is the penalty factor, and ng is the number of constraints g.

J̄(~xi,G) = J(~xi,G) +

ng∑
i=1

µ(max(0, gi(~xi,G)))2 (26)

The set of feasibility rules proposed by Deb [7] are three criteria adopted to select

solutions based on feasibility and they are the following:

� Any feasible solution is preferred to any infeasible solution.

� Between two feasible solutions, the one having better objective function value is preferred.

� Between two infeasible solutions, the one having smaller sum of constraint violation

SCV =
∑ng

i=1(max(0, gi(~xi,G)))2 is preferred.

The pseudocodes of DE/best/1/bin and DE/current-to-best/1, where each one of
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the two constraint-handling techniques (penalty function or Deb’s feasibility rules)

can be used, are presented in Algorithms 2 and 3, respectively.

5. Results

The simulation tests were designed to asses the performance of two DE vari-

ants described in Section 4, both using the two constraint-handling techniques al-

ready introduced. Therefore, four DE variants were considered: Best/1/bin/EP,

Best/1/bin/DF, Curret − to − best/EP and Current − to − best/DF, where the

last term refers to the constraint-handling technique: EP means exterior penalty-

function, while DF stands for Deb’s feasibility-rules. After the four DE variants

comparison, the most competitive is further compared against a traditional auto-

matic control technique.

The algorithms were coded in Matlab on a 64-bit Windows operating systems,

with Intel Core i5− 3317U processor (1.70 GHz) and 4GB of RAM. The parameter

values of the DE variants were obtained by using the Iterated Racing for Automatic

Algorithm Configuration (iRace) package [14], a parameter tuning tool which finds

the most suitable settings for an EA. The obtained parameters and the short name

for each DE variant are presented in Table 1. All runs stop after 900 evaluations of

the performance function for the parameter tuning process and for the simulation

tests reported in this document. Additionally, the upper limits of the design variable

vector p̄ were chosen as in Table 2 and those were selected according to a decrease

of at most 25% in the nominal parameters of the DC motor showed in Table 3. The

lower limits are set to zero because the DC motor parameter variations can not be

negative. Only p̄MAX6 includes both positive and negative bound values due to the

consideration of positive or negative load torque uncertainties applied to the motor

shaft. In addition, it is considered bounds of the applied voltage as uMAX = 70V ,
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Algorithm 2 DE/best/1/bin
1: G=0
2: Create a randomly-generated initial population ~xi,G ∀i, i = 1, . . . , NP
3: Evaluate J(~xi,G), each constraint gj(~xi,G) ∀j, j = 1, . . . , ng and the SCV ∀i, i =

1, . . . , NP
4: if Penalty function is used then
5: Calculate J̄(~xi,G) based in Equation 26
6: end if
7: for G← 1 to MAX GEN do
8: for i← 1 to NP do
9: Randomly select r1 6= r2 6= i

10: Jrand = randint[1, D]
11: for j ← 1 to D do
12: if randj ≤ Cr Or j = Jrand then
13: ui,j,G = xbest,j,G + F (xr1,j,G − xr2,j,G)
14: else
15: ui,j,G = xi,j,G
16: end if
17: end for
18: if Penalty function is used then
19: if J̄(~ui,G) ≤ J̄(~xi,G) then
20: ~xi,G+1 = ~ui,G
21: else
22: ~xi,G+1 = ~xi,G
23: end if
24: else
25: if SCV (~ui,G) = 0 And SCV (~xi,G) > 0 then
26: ~xi,G+1 = ~ui,G
27: else if SCV (~ui,G) > 0 And SCV (~xi,G) = 0 then
28: ~xi,G+1 = ~xi,G
29: else if SCV (~ui,G) = 0 And SCV (~xi,G) = 0 then
30: if J(~ui,G) < J(~xi,G) then
31: ~xi,G+1 = ~ui,G
32: else
33: ~xi,G+1 = ~xi,G
34: end if
35: else
36: if SCV (~ui,G) < SCV (~xi,G) then
37: ~xi,G+1 = ~ui,G
38: else
39: ~xi,G+1 = ~xi,G
40: end if
41: end if
42: end if
43: end for
44: end for
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Algorithm 3 DE/current-to-best/1
1: G=0
2: Create a randomly-generated initial population ~xi,G ∀i, i = 1, . . . , NP
3: Evaluate J(~xi,G), each constraint gj(~xi,G) ∀j, j = 1, . . . , ng and the SCV ∀i, i =

1, . . . , NP
4: if Penalty function is used then
5: Calculate J̄(~xi,G) based in Equation 26
6: end if
7: for G← 1 to MAX GEN do
8: for i← 1 to NP do
9: Randomly select r1 6= r2 6= i

10: Jrand = randint[1, D]
11: for j ← 1 to D do
12: ~ui,G = ~xi,G + K(~xbest,G − ~xi,G) + F (~xr1,G − ~xr2,G)
13: end for
14: if Penalty function is used then
15: if J̄(~ui,G) ≤ J̄(~xi,G) then
16: ~xi,G+1 = ~ui,G
17: else
18: ~xi,G+1 = ~xi,G
19: end if
20: else
21: if SCV (~ui,G) = 0 And SCV (~xi,G) > 0 then
22: ~xi,G+1 = ~ui,G
23: else if SCV (~ui,G) > 0 And SCV (~xi,G) = 0 then
24: ~xi,G+1 = ~xi,G
25: else if SCV (~ui,G) = 0 And SCV (~xi,G) = 0 then
26: if J(~ui,G) < J(~xi,G) then
27: ~xi,G+1 = ~ui,G
28: else
29: ~xi,G+1 = ~xi,G
30: end if
31: else
32: if SCV (~ui,G) < SCV (~xi,G) then
33: ~xi,G+1 = ~ui,G
34: else
35: ~xi,G+1 = ~xi,G
36: end if
37: end if
38: end if
39: end for
40: end for
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uMIN = −70V and this must be set according with the maximum/minimum nominal

voltage of the DC motor. The penalty factor was set to µ = 1000 through a trial and

error procedure in order to greatly penalize the performance function when unfeasible

individuals are given

In the simulation tests, both, the regulation and the tracking control problems

[26] were taken into consideration. The references for the regulation control problem

and for the tracking control problem were wr = 40rad/s and wr = 40 sin(6.28t)rad/s,

respectively. In both cases, the gains of the inverse dynamic control (6) were set as

kp = 34524, kd = 368 through a rigours trial and error procedure where the used

values in the paper are those that provide the best performance function among trials.

The simulation parameters of the closed loop system considered an integration step of

∆t = 5ms and a final time of tf = 6s. The selection of the control gains were given by

a rigours trial and error procedure where such values are those that provide the best

performance function among trials. In order to provide uncertainties in the nominal

parameters of the DC motor, represented in Table 3, time-variant parameters of

the DC motor were incorporated in the simulation tests. Two different time-variant

parameters were regarded for both control problems: Parameter TV P1 : Time-

variant parameters can only change its nominal value by 10% in the time interval

t ∈ [2, 4]s and they are expressed in Table 4. Parameter TV P2 : Time-variant

Table 1: Parameters of the DE variants by using the iRace package.

DE variant Nomenclature K CR F NP ∆w

DE/Current− to− best/EP DEC2B-EP 0.6302 - 0.3567 42 10

DE/Current− to− best/DF DEC2B-DF 0.8684 - 0.4281 112 9

DE/Best/1/bin/EP DEB1B-EP - 0.8118 0.4019 50 10

DE/Best/1/bin/DF DEB1B-DF - 0.8869 0.5639 65 9
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Table 2: Limits of the design variable vector p̄.

p̄MAX1 p̄MAX2 p̄MAX3 p̄MAX4 p̄MAX5 p̄MAX6

p̄MAX 2 1200 5 100 10 150

p̄MIN 0 0 0 0 0 -150

Table 3: Nominal parameters (NomP) of the DC Motor.

NomP Value Unit

J0 0.000345 Nms2

km 0.394600 Nm

b0 0.000585 Nms2

Ra 9.665000 Ω

ke 0.413300 V/rads

La 0.102440 H

τL 0 Nm

parameters can change its nominal value by 10% all time interval, i.e., t ∈ [0, tf = 6]s

and they are expressed in Table 5. For closed loop simulation results, time-variant

parameters were included as p = p̆. It is important to point out that the time-variant

parameters of the DC motor have different frequencies in order to highly perturb the

dynamics of the motor.

5.1. Performance analysis of the DE variants

Ten independent runs were carried by each DE variant (DEC2B-EP, DEC2B-

DF, DEB1B-EP, DEB1B-DF) for each control problem than involves two dif-

ferent DC motor parameters (TVP1 and TVP2) i.e., the control problems were:

regulation control problem with TVP1 parameter (RCP-TVP1), regulation control
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Table 4: Parameter TVP1: Time-variant parameters (TVP) of the DC motor. Those can be

grouped in p̆ ∈ R6.

TVP Value ∀ t ∈ [2,4] Value ∀ t /∈ [2,4] Unit

J̆0 J0 + 0.10J0sin(2.0943t) J0 Nms2

k̆m km + 0.10kmsin(6.2831t) km Nm

b̆0 b0 + 0.10b0sin(3.1415t) b0 Nms2

R̆a Ra + 0.10Rasin(2.0943t) Ra Ω

k̆e ke + 0.10kesin(6.2831t) ke V/rads

L̆a La + 0.10Lasin(3.1415t) La H

τ̆L 0 τL Nm

problem with TVP2 parameter (RCP-TVP2), tracking control problem with TVP1

parameter (TCP-TVP1), tracking control problem with TVP2 parameter (TCP-

TVP2).

In Table 6 the error velocity norm ‖ė(t)‖ ∀ t ∈ [1.6, 6]s is given by each DE

variant per single run. The error velocity norm is computed from the settling time

of 1.6s. Only the results with acceptable behavior are showed i.e., the results with

trajectory velocity error less than 5% with respect to the desired velocity trajectory.

Otherwise, a dash is included for unacceptable results. The number of unacceptable

results for each DE variant were: four with the DEB1B-EP (in RCP-TVP2 ), two

with the DEB1B-DF (in RCP-TVP1 and RCP-TVP2 ), two with the DEC2B-EP

(in RCP-TVP1 and RCP-TVP2 ) and one using DEC2B-DF (in RCP-TVP2 ). Such

results indicate that all DE variants are reliable for the tracking control problem

(TCP) but in the regulation control problem (RCP) the more reliable DE variant

was DEC2B-DF which only presented one unacceptable result. When using the

21



Table 5: Parameter TVP2: Time-variant parameters (TVP) of the DC motor. Those can be

grouped in p̆ ∈ R6.

TVP Value ∀ t ∈ [0, tf ] Unit

J̆0 J0 + 0.10J0sin(2.0943t) Nms2

k̆m km + 0.10kmsin(6.2831t) Nm

b̆0 b0 + 0.10b0sin(3.1415t) Nms2

R̆a Ra + 0.10Rasin(2.0943t) Ω

k̆e ke + 0.10kesin(6.2831t) V/rads

L̆a La + 0.10Lasin(3.1415t) H

τ̆L 0 Nm

DE variants in the tracking control problem, the DC motor is persistently excited

by an input over both, the bandwidth and the full amplitude range of the system,

however with the regulation control problem this does not happen. Hence, with out a

persistently excited input, the convergence of the algorithm tends to local minimum

which implies an increase in the velocity error. It is important to remark that the

mean runtime by DEC2B-DF and DEB1B-EP was around 0.3171s.

Non-parametric statistical tests were applied to the results obtained in the sam-

ples of runs in Table 6. As a first step, the 95%-confidence Kruskal-Wallis and 95%-

confidence Friedman tests were applied. Table 7 summarizes the p-values obtained.

According to those results, in the four control problems (RCP-TVP1, RCP-TVP2,

TCP-TVP1,TCP-TVP2) significance differences among the four DE variants were

reported. To get a closer look into the statistical significance of results, the 95%-

confidence Wilcoxon test was applied to pair-wise comparisons between DE variants

per each problem instance. The obtained p-values are reported in Table 8, where
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Figure 2: Box plots of the results obtained by the four DE-variants.

most of the results provided by the Kruskal-Wallis and Friedman tests were con-

firmed, and the significance improvement with a level of significance α = 0.5 is

shown in bold face. The exceptions were mainly attributed in the case DEB1B-

EP / DEB1B-DF, where no significant differences in three problems (RCP-TVP1,

RCP-TVP2, and TCP-TVP1) were found. The other cases with no significant differ-

ences were DEC2B-EP / DEB1B-EP in test problems TCP-TVP1 and TCP-TVP2;

DEC2B-DF / DEB1B-EP in problem TCP-TVP2; and finally DEC2B-EP / DEB1B-

DF in the same test problem TCP-TVP2. The boxplots generated by the statistical

results are presented in Figure 2.

From the results showed in Tables 6, 7, 8, and Figure 2, the following findings

are remarked: DEC2B-DF outperformed the other three variants in three prob-

lems: RCP-TVP1, RCP-TVP2, and TCP-TVP1. Regarding the remaining test
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problem TCP-TVP2, DEC2B-DF provided the best performance among DEC2B-EP

and DEB1B-DF. Nevertheless, the DEC2B-DF and DEB1B-EP presents a similar

behavior in the test problem TCP-TVP2. Through the previous analysis, it can be

concluded that the set of feasibility rules combined with the arithmetic crossover pro-

moted by the DE/current-to-best/1 variant, were the most suitable for the proposed

DE-based adaptive control when dealing with the four problem instances tackled in

this work.

24



Table 6: Results obtained by each DE variant in each one of the four problem instances. Results with trajectory

velocity error more than 5% with respect to the desired velocity trajectory (unacceptable results) are marked

with “-”. Best statitical results are marked with boldface.

Run
‖ė(t)‖ rad/s ∀ t ∈ [1.6,6]s by each DE variant

DEB1B-EP DEB1B-DF DEC2B-EP DEC2B-DF

1 2.9641 3.4142 2.5048 1.9645

2 5.8824 4.8499 2.3579 3.8882

3 3.4199 - 2.3067 1.6994

4 3.8861 5.3991 5.5118 2.1799

5 2.7179 4.679 2.2367 1.7826

6 9.6626 6.5084 2.7207 2.2266

7 7.6951 5.5136 3.908 1.7732

8 3.3285 5.8719 - 2.3436

9 5.3663 2.465 2.8082 2.2602

10 3.1186 4.189 2.372 2.2001

Mean 4.8042 4.7656 2.9696 2.2318

Median 3.653 4.8499 2.5048 2.19

S. D. 2.3323 1.2594 1.0814 0.6261

Run
‖ė(t)‖ rad/s ∀ t ∈ [1.6,6]s by each DE variant

DEB1B-EP DEB1B-DF DEC2B-EP DEC2B-DF

1 6.9538 6.5687 - 5.4969

2 7.5022 6.9558 5.2931 3.2533

3 - 7.7221 5.6116 4.3257

4 - 5.5069 4.6116 4.4052

5 - - 5.2807 5.2921

6 5.9647 4.9392 4.766 5.7081

7 5.3584 6.9657 4.0889 3.6742

8 - 7.052 5.0047 -

9 5.0047 6.1263 5.5646 3.7599

10 6.4904 5.923 5.1967 3.8898

Mean 6.2425 6.4177 5.0464 4.4228

Median 6.2276 6.5687 5.1967 4.3257

S. D. 0.9089 0.8705 0.4890 0.8820

a) Control Problem: RCP-TVP1 b) Control Problem: RCP-TVP2

Run
‖ė(t)‖ rad/s ∀ t ∈ [1.6,6]s by each DE variant

DEB1B-EP DEB1B-DF DEC2B-EP DEC2B-DF

1 3.0121 2.2859 1.3993 1.3228

2 1.4333 1.7801 1.7366 1.311

3 1.3505 1.7481 1.7098 1.4452

4 1.3885 1.7162 1.6466 1.4091

5 1.6834 2.045 1.5854 1.4356

6 1.7265 1.5811 1.2843 1.3564

7 1.4952 1.7379 1.3611 1.3405

8 1.4968 1.8127 1.3826 1.4601

9 2.3463 1.6597 1.3728 1.2841

10 1.4089 1.6173 2.0222 1.2971

Mean 1.73415 1.7984 1.55007 1.36619

Median 1.496 1.743 1.49235 1.34845

S. D. 0.5361 0.2138 0.2315 0.0658

Run
‖ė(t)‖ rad/s ∀ t ∈ [1.6,6]s by each DE variant

DEB1B-EP DEB1B-DF DEC2B-EP DEC2B-DF

1 1.1658 1.829 1.5768 1.4196

2 1.2108 2.6438 1.6599 1.1213

3 2.6003 1.4769 1.6541 1.3897

4 1.3707 1.8798 1.584 1.4605

5 1.0995 2.0412 2.3379 1.3515

6 1.2115 1.5632 2.918 1.1315

7 1.09 3.0749 1.3157 1.0414

8 1.0643 1.7569 1.5017 1.6356

9 1.0748 3.4493 1.5433 1.2986

10 1.3602 1.5431 1.4875 1.2216

Mean 1.3248 2.1258 1.7579 1.3071

Median 1.1883 1.8544 1.5804 1.3251

S. D. 0.4616 0.6904 0.4883 0.1814

c) Control Problem: TCP-TVP1 d) Control Problem: TCP-TVP2
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Table 7: Results of the 95%-confidence Kruskal-Wallis and Friedman tests.

Problem instance
p-value

Kruskall-Wallis test Friedman test

RCP-TVP1 <0.0001 0.0013

RCP-TVP2 0.001 0.0406

TCP-TVP1 0.001 0.0018

TCP-TVP2 <0.0001 0.0004

Table 8: Results of the 95%-confidence Wilcoxon signed-rank test.

DE variants
p-value

RCP-TVP1 RCP-TVP2 TCP-TVP1 TCP-TVP2

DEC2B-DF versus DEC2B-EP 0.038 0.04 0.016 0.005

DEC2B-DF versus DEB1B-EP 0.003 0.018 0.01 0.762

DEC2B-DF versus DEB1B-DF 0.005 0.01 0.003 0.003

DEC2B-EP versus DEB1B-EP 0.022 0.053 0.342 0.979

DEC2B-EP versus DEB1B-DF 0.021 0.007 0.021 0.131

DEB1B-EP versus DEB1B-DF 0.639 0.583 0.238 0.021

5.2. Comparison against a traditional control technique

After identifying the most competitive DE variant, its performance was compared

against the Proportional-Integral control (PIC). DEC2B-DF is identified as Differ-

ential Evolution Based Adaptive Control (DEBAC) in this simulation test. The

proportional gains and the integral ones of the PIC are chosen as k̄p = 0.15 and

k̄i = 12.9904, respectively. Those proposed gains were obtained through a rigours

trial and error procedure where the used values in the paper are those that provide

the best performance function among trials.

In Table 9, the comparison of the control systems performance was made by

computing the three commonly used control performance indexes [20]: the Integral

Absolute Error (IAE) given by
∫ 6

1
|e(t)| dt, the Integral Time-weighted Absolute Error

26



(ITAE) represented by
∫ 6

1
t · |e(t)| dt and the Integral Squared Error (ISE) given by∫ 6

1
e2dt.

The results obtained by both approaches show that DEBAC clearly outperformed

PIC in the four problem instances based on the three error measures (see mean and

median values in Table 9). With those results, the findings are stated as follows for

the Regulation Control Problem (RCP) and the Trajectory Control Problem (TCP):

i) the DEBAC improvements for the IAE with respect to PIC were around 83.32%

and 99.34%, respectively. Such values suggest that DEBAC efficiently reduced the

velocity error oscillation induced by time varied parameters of the DC motor; ii)

the DEBAC improvements for the ITAE with respect to PIC were around 83.31%

and 99.27%, respectively. With the ITAE index, the analysis was focused on the

velocity error after the settling time. Hence, DEBAC presented smaller error in the

stabilization and tracking of the velocity of the DC motor. Finally, iii) the DEBAC

improvements for the ISE with respect to PIC were around 92.49% and 99.99%,

respectively. Such behavior indicates that DEBAC provided a low amplitude velocity

error band.
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Table 9: Comparative results of the performance criteria for the DEBAC and PIC approaches.

RCP-TVP1

IAE ITAE ISE

MEAN 191.7617 584.7208 111.1628

MEDIAN 191.7617 584.7208 111.1628

S.D. 0 0 0

RCP-TVP1

IAE ITAE ISE

MEAN 34.2405 102.234 8.3504

MEDIAN 31.9373 95.6884 5.646

S.D. 6.0609 20.0381 5.6044

a) PIC b) DEBAC

RCP-TVP2

IAE ITAE ISE

MEAN 484.0223 1683.209 288.7147

MEDIAN 484.0223 1683.209 288.7147

S.D. 0 0 0

RCP-TVP2

IAE ITAE ISE

MEAN 82.6115 281.7535 19.9969

MEDIAN 81.1991 281.0921 15.6258

S.D. 6.9297 18.5411 11.999

c) PIC d) DEBAC

TCP-TVP1

IAE ITAE ISE

MEAN 5176.836 18006.33 33078.68

MEDIAN 5176.836 18006.33 33078.68

S.D. 0 0 0

TCP-TVP1

IAE ITAE ISE

MEAN 35.4370 122.2728 2.7226

MEDIAN 34.3451 117.4929 2.1015

S.D. 3.1482 12.1586 1.3390

e) PIC f) DEBAC

TCP-TVP2

IAE ITAE ISE

MEAN 5161.922 17909.65 33074.92

MEDIAN 5161.922 17909.65 33074.92

S.D. 0 0 0

TCP-TVP2

IAE ITAE ISE

MEAN 36.61931 131.2836 4.72944

MEDIAN 36.24145 125.8612 2.1403

S.D. 7.105131 20.02316 8.385448

g) PIC h) DEBAC

To provide further evidence on the different performances provided by DEBAC

and PIC, in Figs. 3-6 the simulation results of the velocity, voltage and current

signal behavior in both control problems (RCP-TVP and TCP-TVP) using DEBAC

(Figs. 3-6b and Figs. 3-6d), and PIC (Figs. 3-6a and Figs. 3-6c) are shown. The

dotted line represents the desired velocity wr, while the continuous line is the current

28



angular velocity of the motor x2. Only in the regulation control problem (RCP), the

time-variant parameters impact on the stabilization of the DC motor (see the time

when the uncertainties are presented in Fig. 3a-b and Fig. 4a-b). This behavior

looks like noise in the control signal (input voltage) and is attributed to the kind of

control problem (regulation control problem) and the uncertainties presented in the

DC motor dynamics. Without uncertainties (for t ∈ [0, 2]
⋃

[4, 6] in Fig. 3) the noise

disappears in the control signal of DEBAC but when the uncertainties are applied

(for t ∈ [2, 4]) the noise appears. This behavior is attributed to the lack of the

reference signal periodicity in the regulation control problem which results in a more

complex problem with a multi-modal behavior when the uncertainties appear in the

DC motor dynamic. Such lack of reference signal periodicity reduce at minimum the

excitation of the DC motor frequencies making more difficult to obtain the control

parameter p̄. Therefore such noisy behavior in the control signals compensates as

possible, the non-linear uncertainties. Based on the simulation results in Figs. 3-6

and on the analysis of Table 9, it can be concluded that DEBAC presents a better

angular velocity, stabilization, and tracking of the DC motor towards the reference

velocity than those provided by PIC, under the effect of time-variant parameters.

In addition, based on the power consumption using for each controller (voltage and

current applied the DC motor), the DEBAC presents a small increment of 3.5%,

7.7%, 2.7% and 3.2% for the RCP-TVP1, RCP-TVP2, TCP-TVP1 and TCP-TVP2,

respectively with respect to the PIC. This energy consumption increment in the

DEBAC corresponds to a better velocity regulation of the DC motor due to control

signal requires more energy to efficiently compensate the uncertainties and therefore

the amplitude in the control signal and its current by using DEBAC are larger than

PIC. Finally, it was observed that in both control systems, the voltage signal (control

signal) satisfied the control signal bounds.
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a) PIC: Motor’s velocity (zoom) b) DEBAC: Motor’s velocity (zoom)
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c) Control signal provided by PIC d) Control signal provided by DEBAC
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e) PIC: Motor’s armature current f) DEBAC: Motor’s armature current

Figure 3: Behavior of the angular velocity, input voltage (control signal) and current of the DC

motor for the PIC and the DEBAC in the RCP-TVP1.
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c) Control signal provided by PIC d) Control signal provided by DEBAC
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e) PIC: Motor’s armature current f) DEBAC: Motor’s armature current

Figure 4: Behavior of the angular velocity, input voltage (control signal) and current of the DC

motor for the PIC and DEBAC in the RCP-TVP2.
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a) PIC: Motor’s velocity (zoom) b) DEBAC: Motor’s velocity (zoom)
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c) Control signal provided by PIC d) Control signal provided by DEBAC
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e) PIC: Motor’s armature current f) DEBAC: Motor’s armature current

Figure 5: Behavior of the angular velocity, input voltage (control signal) and current of the DC

motor for the PIC and DEBAC in the TCP-TVP1.
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a) PIC: Motor’s velocity (zoom) b) DEBAC: Motor’s velocity (zoom)
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c) Control signal provided by PIC d) Control signal provided by DEBAC
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e) PIC: Motor’s armature current f) DEBAC: Motor’s armature current

Figure 6: Behavior of the angular velocity, input voltage (control signal) and current of the DC

motor for the PIC and DEBAC in the TCP-TVP2.

On the other hand, in order to show the behavior of the DEBAC with a nonlinear

load, a pendulum system is incorporated into the shaft of the DC motor. Such

dynamics modifies the inertia and the load torque of the DC motor parameters as
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follows: J̆0 = J0 +(I+ml2c) and τ̆L = (mlcgsin(x1)) where the pendulum parameters

are the mass m = 0.1604kg, the mass center length lc = 0.06032m and the inertia

I = 6.5465E − 4kgm2, respectively, and the term g = 9.81m/s2 is the gravitational

acceleration. The rest of the DC motor parameters are set according to their nominal

ones. In Fig. 7 and 8, the behavior of the PIC and DEBAC with the pendulum as load

is displayed for the velocity regulation and the velocity tracking. It is observed that

the DEBAC outperforms the performance of the PIC such that the velocity error is

decreased. With reference to the energy consumption a similar behavior is presented

as in the previous cases (RCP-TVP1, RCP-TVP2, TCP-TVP1, TCP-TVP2), i.e.,

a small increment of the energy consumption is presented in the DEBAC because

of a better compensation of the nonlinear load. This indicates that the proposal

DEBAC efficiently compensates the nonlinear behavior due to a robotic manipulator

dynamics, and hence the proposal may be used in the control of complex system.
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Figure 7: Behavior of the angular velocity, input voltage (control signal) and current of the DC

motor for the PIC and DEBAC with a pendulum as load in the regulation problem.
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Figure 8: Behavior of the angular velocity, input voltage (control signal) and current of the DC

motor for the PIC and DEBAC with a pendulum as load in the tracking problem.

6. Conclusions

In this paper, an alternative control of a DC motor based on a differential evo-

lution (DE) adaptation was proposed. The dynamic optimization problem for the
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differential evolution based control adaptation (DEBAC) was stated. The design of

the search algorithm was obtained by an empirical study of two DE variants com-

bined with two different constraint-handling techniques (an exterior penalty function

and a set of feasibility rules). The main highlights of such empirical comparison were

the following:

• In the regulation control problem, the more reliable DE variant was DEC2B-

DF because only one unacceptable result was provided. In the tracking control

problem, all studied variants were reliable.

• The most competitive DE variant was DEC2B-DF. Hence, the constraint-

handling technique based on the feasibilty rules coupled with the arithmetic

crossover of DE/current-to-best/1 promoted a more suitable search and hence

the importance of analysing the contraint handling in the control tuning using

EAs.

The so-called DEBAC (DEC2B-DF from the empirical comparison abovemen-

tioned) efficiently handled with time-variant parameters in the DC motor with ac-

ceptable closed loop systems performance. The results provided by DEBAC showed

a superior performance in the stabilization and tracking of the motor’s velocity when

compared against a Proportional-Integral control (PIC). From that comparison be-

tween DEBAC and PIC the findings were the following:

• DEBAC reduced the velocity error oscillation and the amplitude velocity error

band due to time varied parameters of the DC motor. Therefore, DEBAC

presented better angular velocity stabilization and tracking values of the DC

motor than those obtained by PIC.
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• The angular velocity error provided by DEBAC was reduced around 83% com-

pared with the error obtained by PIC.

The future work will cover the analysis of DE variants in parallel computing

paradigm for the laboratory testing purposes (real time implementation), the solu-

tion of the problem as a multi-objective optimization problem by using evolutionary

algorithms and the performance analysis of the DEBAC in complex systems.
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List of figure captions:

Figure 1: Schematic diagram of the dynamic optimization process for the on-line

control parameter estimation.

Figure 2: Box plots of the results obtained by the four DE-variants.

Figure 3: Behavior of the angular velocity, input voltage (control signal) and

current of the DC motor for the PIC and the DEBAC in the RCP-TVP1.

Figure 4: Behavior of the angular velocity, input voltage (control signal) and

current of the DC motor for the PIC and the DEBAC in the RCP-TVP2.

Figure 5: Behavior of the angular velocity, input voltage (control signal) and

current of the DC motor for the PIC and the DEBAC in the TCP-TVP1.

Figure 6: Behavior of the angular velocity, input voltage (control signal) and

current of the DC motor for the PIC and the DEBAC in the TCP-TVP2.
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Figure 7: Behavior of the angular velocity, input voltage (control signal) and

current of the DC motor for the PIC and DEBAC with a pendulum as load in the

regulation problem.

Figure 8: Behavior of the angular velocity, input voltage (control signal) and

current of the DC motor for the PIC and DEBAC with a pendulum as load in the

tracking problem.
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List of table captions:

Table 1: Parameters of the DE variants by using the iRace package.

Table 2: Limits of the design variable vector p̄.

Table 3: Nominal parameters (NomP) of the DC Motor.

Table 4: Parameter TVP1: Time-variant parameters (TVP) of the DC motor.

Those can be grouped in p̆ ∈ R6.

Table 5: Parameter TVP2: Time-variant parameters (TVP) of the DC motor.

Those can be grouped in p̆ ∈ R6.

Table 6: Results obtained by each DE variant in each one of the four problem

instances. Results with trajectory velocity error more than 5% with respect to the

desired velocity trajectory (unacceptable results) are marked with “-”. Best statiti-

cal results are marked with boldface.
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Table 7: Results of the 95%-confidence Kruskal-Wallis and Friedman tests.

Table 8: Results of the 95%-confidence Wilcoxon signed-rank test.

Table 9: Comparative results of the performance criteria for the DEBAC and

PIC approaches.
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