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ABSTRACT

The increment of efficient mobile robots in Engineering has motivated the search
for new alternatives to improve the control tuning task. In this paper, the Cartesian
space Proportional-Derivative control tuning for Omnidirectional Mobile Robots is
established under an offline dynamic optimization approach where the minimiza-
tion of the tracking error and energy consumption are simultaneously considered
providing an efficient performance in the real test. The statistical study on the per-
formance of twelve different meta-heuristic algorithms and one gradient technique
indicates that using the fittest solution in the meta-heuristic optimization process
through generations allows finding more suitable controller parameters. Also, real
tests with each of the best control gains obtained through algorithms are performed
into a laboratory prototype. The laboratory test analysis statistically indicates that
the 75% of comparisons with the best control gains present different performance
functions in spite of presenting slightly different control gains.
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1. Introduction

In recent years, mobile robot control has received wide attention and is a topic of great
research interest due to a large number of situations that humans cannot accomplish,
and the practical importance of its applications in spatial or terrestrial reconnaissance
(Vallvé and Andrade-Cetto 2015), in the execution of tasks in hard environments (Zhao
et al. 2016), in material handling (Peng et al. 2016), in cooperative tasks (Baca et al.
2015), among others. Thus, the efficiency increment in robot movements has become
more significant over time.

Proportional-Integral-Derivative (PID), Proportional-Integral (PI) and
Proportional-Derivative (PD) controllers have been widely used in industrial
applications instead of applying advanced control strategies (Khalil 2014) due to their
simplicity and its ease of implementation. Moreover, the PID controller is one of the
most used low-level control strategies, and its response depends on the setup of their
parameters. Therefore, finding suitable control parameters for the mobile robot is a
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crucial task to increase the performance of the control system (Reynoso-Meza et al.
2009).

The study of the PID control tuning began in 1942 where empirical procedures were
established to regulate linear systems (Ziegler and Nichols 1942). Nowadays, the use
of computational intelligence and soft computing to rule-based and knowledge-based
system methodologies in the control engineering area have increased recently. The
use of such methodologies in control engineering is generally referred to as Intelligent
Control (Ruano 2007), and one of the most important problems in this research area
is the control tuning. Among control tuning methodologies (Villarreal-Cervantes and
Alvarez-Gallegos 2016), the optimization methods and the adaptive methods are gain-
ing more importance due to the necessity for increasing the overall performance of
machines at the same time that a set of requirements are met. These tuning method-
ologies are established as a mathematical programming problem where the most ap-
propriate control gains are found offline (optimization methods) or online (adaptive
methods) based on a cost function (Caponio et al. 2007). Meta-heuristic algorithms,
whose operation is inspired by the behavior of natural systems, are used more and
more frequently to solve optimization problems in the design of mechatronic systems
with a high degree of synergy in the structure-control design framework (Villarreal-
Cervantes 2017; Portilla-Flores et al. 2011); in robotic applications for complex tasks
(Fong, Deb, and Chaudhary 2015) such as path planning (Mac et al. 2016) in un-
known environments (Kulich, Miranda-Bront, and Přeučil 2017), the gait generation
of humanoid robots (Huan et al. 2018), among others; and in the adjustment of con-
troller parameters for mechatronics systems using optimization (Villarreal-Cervantes
and Alvarez-Gallegos 2016) and adaptive (Villarreal-Cervantes et al. 2017; Villarreal-
Cervantes, Mezura-Montes, and Guzmán-Gaspar 2018) tuning methods. The above
because of the ability of these algorithms to find a solution near the global one in
highly nonlinear, discontinuous or non-convex design spaces, and because they do not
require additional problem information such as gradients, Hessian matrices, initial
search points, etc. Moreover, they are independent of the problem characteristics, i.e.,
they can be used/adapted to solve a wide variety of problems from different contexts.
Nevertheless, statistical tests must be developed to validate the performance of the ob-
tained results due to the stochastic way in which these algorithms search for solutions
(Derrac et al. 2011). Also, it can be necessary for these algorithms to be computa-
tionally efficient for particular problems such as the control tuning based on adaptive
methods, where the computational burden must be minimized to allow the online com-
puting of the best controller parameters (Rodŕıguez-Molina, Villarreal-Cervantes, and
Aldape-Pérez 2017; Rodŕıguez-Molina et al. 2019).

In this paper, we are interested in offline control tuning based on optimization
methods. The above because these methods do not require a high computational cost
to the real application, since once the optimum control gains are found, they are
implanted in the real control system and remain fixed (no additional changes are
required in the closed-loop system), which in turn can be easily implemented for an
industrial robot. In this sense, the real implementation (laboratory test) is one of the
main issues presented in such methods, where an important lack of real experimental
results is detected which are considered indispensable to show the reliability of this
tuning approach. One example of the efficiency of meta-heuristic algorithms in the
controller tuning based on optimization methods is shown in (Jiménez et al. 2015),
where a genetic algorithm is used to automate the tuning process of Passive Optical
Networks and up to 64% of the tuning time is reduced. In (Amador-Angulo and Castillo
2018), the Bee Colony Optimization (BCO) algorithm is used to tune a type-1 fuzzy
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logic controller for two benchmark control problems: the water tank regulation control
and the mobile robot trajectory tracking. The fuzzy dynamic adaptation is included
in the optimal search of two parameters of the BCO algorithm allowing this last to
run more precisely and efficiently. The type-2 fuzzy controllers for autonomous mobile
robots are tuned by using the firefly algorithm in (Lagunes et al. 2018). Similar to
(Amador-Angulo and Castillo 2018), the dynamic adjustment of the firefly algorithm
is carried out by using type-1 and type-2 fuzzy logic showing superior results.

On the other hand, some enhancement strategies have been incorporated in meta-
heuristic algorithms as in (Wei and Shun 2010), where the velocity equation of the
Particle Swarm Optimization (PSO) is updated and hence the tracking performance of
the PID controller for a pendulum system is improved by using the obtained optimal
controller gains. Another research is the work proposed in (Helon and Leandro 2012),
which provides useful information in simulation about the tuning process of the PID
controller for a two degree of freedom (d.o.f.) robotic system. In this, a multi-objective
optimization problem is developed, and the non-dominated sorting genetic algorithm
II is used to find suitable trade-offs between the position error and the smoothness
of the control signal. In (Pan, Das, and Gupta 2011), a comparative closed-loop per-
formance evaluation for the optimal PID and the optimal fuzzy PID based networked
control system is presented. These optimal control gains are obtained through four
variants of the PSO and then are tested in simulation such that superior performance
is given by the lbest PSO variant. Robustness in the PID control gains, which are
found with the PSO algorithm, is obtained for three hydraulic tank systems in (Karer
and Škrjanc 2016), through considering sensitivity function constraints into the opti-
mization problem. Simulation results confirm that those gains were useful when system
perturbations had not been considered in the design phase, as well as the case where
linear systems are only considered into the optimization process instead of nonlin-
ear ones. Nevertheless, in a real application (laboratory tests with an experimental
prototype), several nonlinear uncertainties such as noise in the input/output signals,
backlash, etc., are not included into the optimization problem due to they may not be
known in advance. In previous works, the efficiency of the control tuning strategy was
verified through a simulated environment. In the experimental environment (test with
a real prototype), the unmodeled uncertainties (unmodeled dynamics) can deteriorate
the closed-loop system performance provided by the obtained control gains (Karer
and Škrjanc 2016). Those uncertainties are usually unknown such that the obtained
control gains may not be for the real environment or they would require an additional
adjustment to provide high control performance. Hence, to the best of the author’s
knowledge, there is no formal analysis that shows enough evidence of its use in practice
of the use of the control tuning based on optimization methods as an offline dynamic
optimization approach for real Omnidirectional Mobile Robots (OMRs).

One of the main characteristics of the OMR is the ability to accomplish linear and
angular movements simultaneously. Such robots present highly nonlinear and coupled
behaviors such that intelligent control system methodologies based on an optimiza-
tion process and meta-heuristic algorithms are promising research fields to handle such
behaviors and perform successful operations in mobile robots (Carlucho et al. 2017).
Nevertheless, a formal statistical comparative analysis of such methodologies in the
control tuning of the OMRs based on optimization methods and meta-heuristic algo-
rithms has not been developed. Moreover, the narrow differences in the control gains
obtained through different algorithms in an offline dynamic optimization approach for
optimal tuning of the OMR control implemented in a laboratory prototype, have not
been analyzed. This analysis indicates the effects of different optimal control gains on
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control performance changes in a real environment.
Hence, the main contributions of this work are: i) The proposal of the control tuning

based on an optimization method as an offline dynamic optimization approach. This
includes the formulation of the single-objective optimization problem whose solution is
a set of control parameters that provide a good trade-off between trajectory tracking
performance and energy consumption. The obtained optimum control gains in the
control system not only perform a specific trajectory, but also other elemental curves
with an outstanding performance. ii) The statistical study of the effectiveness of twelve
different meta-heuristic algorithms, and one gradient-based technique. This study is
used to identify promising alternatives or beneficial meta-heuristic mechanisms that
aid the improvement of the Omnidirectional Mobile Robot control performance. iii)
The empirical analysis of experimental results with the control gains obtained by each
algorithm to know the benefits on the performance function of the real Omnidirectional
Mobile Robot when slight variations on the control gains are presented. Moreover, this
analysis confirms the effectiveness of the proposed tuning approach where additional
comparisons with the gain-scheduled LQR show the reliability of the proposal.

The rest of the paper is organized as follows. Section 2 introduces the way to for-
mulate the control tuning problem as a methodology based on optimization methods
where the performance function and constraints are proposed. Also, the mathematical
description of the mobile robot is explained for the inclusion of the dynamic constraint,
and also the PD control system is introduced. A brief description of the different meta-
heuristic algorithms and the gradient-based one, used to tune the control system is
presented in Section 3. Section 4 shows the comparative analysis of optimizers based
on simulation and experimental results. The conclusions are drawn in Section 5.

2. Offline dynamic optimization approach for optimal tuning of the

OMR control

The schematic diagram of the OMR is shown in Fig. 1, where the mass and the in-
ertia of the mobile robot are represented by m and Iz; r and J are the radius and
the inertia of wheels; L is the distance between the mass center of the mobile robot
and wheels; θi and θ̇i are the angular position and velocity of the i − th wheel. The
state vector corresponding to the linear/angular position and velocity of the Omni-
directional Mobile Robot expressed in the inertial coordinate system is denoted by

x = [x1, x2, x3, x4, x5, x6]
T =

[

xw, yw, φw, ẋw, ẏw, φ̇w

]T

∈ R6. The dynamics of the

OMR is given in (1), where the used Cartesian space PD control is expressed in (4)

considering e =
[

x̄d − x1, ȳd − x2, φ̄d − x3
]T

and ė =
[

˙̄xd − x4, ˙̄yd − x5,
˙̄φd − x6

]T

as

the lineal/angular position and velocity error vectors between mobile position/velocity

and the desired ones x̄ =
[

x̄d, ȳd, φ̄d, ˙̄xd, ˙̄yd,
˙̄φd

]T

and control gains are represented as

kp = diag (kp1, kp2, kp3) ∈ R3x3 and kd = diag (kd1, kd2, kd3) ∈ R3×3.

ẋ = f(x, p) + g(x, p)u (1)

where the terms in (1) are defined in (2)-(3) considering ϑ = r
2mr2+3J ,
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Figure 1. Schematic diagram of the OMR.

f(x, p) =
[
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(2)
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(3)

and the controller u is given by (4),

u = J̆T (kpe+ kdė) (4)

considering the Jacobian matrix J̆ ∈ R3×3 in 5.
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(5)

Let the design variable vector p = [kp1, kp2, kp3, kd1, kd2, kd3]
T ∈ R6 be the control

gains, the offline dynamic optimization approach to the optimal tuning of the Om-
nidirectional Mobile Control aims to find the optimal vector p∗ which improves the

performance of both the accuracy of the trajectory tracking J̄1 =
∫ tf

0 e21dt+
∫ tf

0 e22dt+

L2
∫ tf

0 e23dt ∈ R (related to the sum of the squared Cartesian position error in Xw−Yw

between the desired position and the position generated by the mobile robot) and the

energy consumption J̄2 =
∫ tf

0 u21dt+
∫ tf

0 u22dt+
∫ tf

0 u23dt ∈ R of the Cartesian space con-

troller u = [u1, u2, u3]
T ∈ R3 (related to the square of the total torque applied by the

control system to the mobile robot). Also, this is subject to the natural dynamic con-
straints of the OMR (7), the desired trajectory to be fulfilled (8)-(10), with f = 1/60
and fφ = 1/120, and the search space bounded by the minimum and maximum val-
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ues of the design variable vector (11) denoted by pmin and pmax, respectively. At the
beginning of the trajectory (8)-(10), the mobile robot must position itself smoothly at
the initial point of a hypocycloid path in the time t = 10s. The smooth trajectory is
given by a Bézier polynomial ϕ = ∆5(126 − 420∆ + 540∆2 − 315∆3 + 70∆4), where
∆ = t/10. After that time (t ≥ 10s), the hypocycloid trajectory is generated. This
assembled trajectory is chosen because it presents highly nonlinear dynamics where
linear controllers can display some issues in the trajectory tracking by the mobile
robot.

In this paper the multi-objective optimization problem is transformed to a single-
objective optimization problem by using the weighted sum approach (Osyczka 1984)
in order to fulfill one trade-off of the Pareto front. Such trade-off is a priori selected
by the weights µ1 and µ2. The formal mathematical dynamic optimization problem
is stated in (6)-(11), where the aggregation function J̄ = µ1J̄1 + µ2J̄2 weights both
criteria (J̄1 and J̄2). In this case, the weights µ1 = 0.95 and µ2 = 0.05 are chosen
as those where an appropriate performance in the trajectory tracking and the energy
consumption (trade-off) is developed by the control system of the mobile robot. Those
weights were found though a rigourous trial and error procedure in order to fulfill the
specific trade-off between both criteria.

Min
p∗∈R6

J̄ (6)

subject to:

dx

dt
= f(x, p) + g(x, p)u (7)

h1 : x̄d −
{

ϕ ∀ t ≤ 10
0.8181 cos(2πft) + 0.1818 cos(9πft) ∀ t > 10

= 0 (8)

h2 : ȳd −
{

0 ∀ t ≤ 10
0.8181 sin(2πft)− 0.1818 sin(9πft) ∀ t > 10

= 0 (9)

h3 : φ̄d −
{

0.4363ϕ ∀ t ≤ 10
0.4363 cos(2πfφt) ∀ t > 10

= 0 (10)

pmin ≤ p ≤ pmax (11)

3. Optimization algorithms

The problem in (6)-(11) is a constrained highly-nonlinear single-objective dynamic
optimization problem. Solving a single-objective problem refers to finding the global
minimum. In a feasible search space denoted by Ω (where all constraints are met), the
global minimum is defined as the smallest value of the objective function J̄ which is
reachable only with the optimal solution p∗ ∈ Ω, i.e., J̄(p∗) ≤ J̄(p), ∀ p ∈ Ω.

For the OMR optimal control tuning problem, p∗ is the vector of the best controller
parameters (proportional and derivative gains) for which the linear/angular position
and velocity errors of the OMR, as well as the energy consumption, are as minimal
as desired (depending on the a priori preference articulation given by the weights µ1

and µ2).
Meta-heuristics are techniques that can solve complex optimization problems such
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as the OMR optimal control tuning problem at a reasonable computational cost. They
are mostly population-based stochastic algorithms that can find good solutions (near
to the optimal solution) to different problems and are commonly inspired by natural
processes.

When solving real-world problems, there is no a priori information about the loca-
tion of the optimal solution or the shape of the search space. The problem could also
be multi-modal (i.e., there are different vectors p∗ ∈ Ω that reach the global minimum,
or there are several local peaks around the global minimum) or the feasible space Ω
may be very hard to find. For this reason, it is not possible to opt for a single algo-
rithm to solve a particular problem of this type and ensure that it can get the best
performance (Wolpert and Macready 1997).

In the last decades, meta-heuristic algorithms have been used to tune control sys-
tems in complex engineering problems based on optimization methods (Fleming and
Purshouse 2002) and then, have been taken as a useful tool in the control community.
Some of the most popular are the Differential Evolution (DE) algorithm (Das and
Suganthan 2011; Das, Mullick, and Suganthan 2016), the Genetic Algorithm (GA)
(Whitley and Sutton 2012), the Particle Swarm Optimization (PSO) (Zhang, Wang,
and Ji 2015), the Firefly algorithm (FA) (Fister et al. 2013), and the Bat Algorithm
(BA) (Chawla and Duhan 2015) . The above because they are easy to implement, are
flexible (they can be modified in order to solve different kinds of optimization prob-
lems, e.g., continuous, discrete, nonlinear and, non-convex), perform well in terms
of accuracy, convergence speed (solutions are obtained using a reasonable amount of
computational time), and robustness in several kinds of benchmark and real-world
problems.

In this work, such well-known meta-heuristic algorithms are adopted to solve the
PD controller optimal tuning problem for the OMR. These meta-heuristics are: Differ-
ential Evolution (using the eight DE variants Rand 1 Bin, DE Rand 1 Exp, DE Best
1 Bin, DE Best 1 Exp, DE Current to Rand 1, DE Current to Best 1, DE Current to
Rand 1 Bin and DE Current to Best 1 Bin), Genetic Algorithm, the Bat Algorithm, the
Firefly Algorithm and the Particle Swarm Optimization. Additionally, the determin-
istic method of Sequential Quadratic Programming (SQP) (which is a gradient-based
technique) is used to perform comparisons.

4. Results

In this section, the obtained results of the algorithm performance for the offline Omni-
directional Mobile Robot control tuning based on the dynamic optimization approach
are analyzed via non-parametric statistical tests (Derrac et al. 2011). One gradient al-
gorithm and twelve meta-heuristic techniques are chosen for such analysis. Moreover,
the control performance in the OMR (measured from a laboratory test with the real
prototype) with the optimum gains obtained from all techniques is discussed.

4.1. Performance analysis of algorithms

Thirty independent runs are carried out for each meta-heuristic technique, and one
hundred independent runs are executed for the SQP algorithm. More runs with random
initial conditions were proposed for the SQP algorithm due to the initial condition
sensitivity which results in the convergence to local minima. The Friedman test is
used to conclude about the algorithm performance.
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Table 1. Parameters of the OMR. (Peñaloza-Mej́ıa et al. 2015).

Parameter Description V alue Units

r Wheel radius 0.0625 m

L Wheel distance to the mass center 0.2870 m

m Mass 16.319 kg

J Wheel inertia 5.82e− 4 kg ·m2

Iz Mobile robot inertia 0.5160 kg ·m2

The conditions of the optimization problem are set as follows: Through the Lya-
punov analysis of the Cartesian space PD control (Siciliano et al. 2009), the lower
bound vector for the design variables pmin = [0, 0, 0, 0, 0, 0]T is selected. The upper
bound vector pmax = [5000, 5500, 3000, 25, 25, 100]T is chosen based on the procedure
given in (Villarreal-Cervantes and Alvarez-Gallegos 2016). The upper bounds in the
derivative gains allows to link the simulation results to the experimental ones i.e.,
the obtained control gains in simulation can be successfully implemented in the real
scenario in spite of the noise in the velocity estimation of the mobile robot. If those
bounds (specifically in the derivative gains) are not considered into the optimization
problem, the control system with the obtained gains can not follow the desired trajec-
tory in the real experiment. The used nominal values for the kinematic and dynamic
parameters of the OMR are shown in Table 1 and obtained through a Computer-Aided
Design software; the uncertainties related to those parameters can ascend up to 3%
due to the laboratory conditions. The Euler integration is employed in the simulation
results to solve the dynamics of the OMR (1) with an initial condition x0 = 0 ∈ R6,
the integration time ∆t = 5ms and the final time tf = 130s.

The algorithm conditions are selected as follows: All meta-heuristic optimizers have
the maximum iteration number Gmax = 200 as the stop criterion and the same popu-
lation size NP = 50. It is important to note that the selected generation number Gmax

was obtained after a series of trials. These trials consist on increasing the generation
number for all algorithms and select the maximum generation where the performance
function J̄ stays around a stable value. The other parameters of meta-heuristic algo-
rithms are chosen by proposing a series of trial and error procedures around of the
recommended values of the state of the art. In the case of SQP, an additional stop
criterion is included because of its premature convergence to local minimum solutions.
This criterion is the step length tolerance (‖λ‖ < 1E−15). In the case of differen-
tial evolution variants, the scale factor F is randomly selected between the interval
[0.3, 0.9] at each generation and the crossover rate is CR = 0.6 for all runs. The scale
factor is set randomly between a specific interval to endow robustness into the DE
variants (Iacca, Neri, and Mininno 2012). In the case of the GA, the selected param-
eters are pm = 0.166, pc = 0.9, ηc = 20 and ηm = 20. The parameters of the BA are:
fmin = 0.1, fmax = 0.9, Ai = 0.6, α = 0.998, r0i = 0.35 and γ → ∞ (i.e. ri = r0i ), with
i = 1, . . . , NP . The FA has the following parameters: α = 0.2, βmin = 0.2, β0 = 1,
γ = 1 and w = 0.95. For the PSO algorithm the parameters are: ~vmin = −1

2~pmin,

~vmax = 1
2~pmax, C1 = 1.6 and C2 = 1.4. In the case of the SQP algorithm, the initial

solution is randomly generated in the interval pmin ≤ p0 ≤ pmax and the SQP was
implemented using the function fmincon of MATLABr.

In Table 2, the descriptive statistics about runs per each algorithm is presented. One
sample of the descriptive statistics is related to the mean of the performance function of
solutions in the last generation per each run of the meta-heuristic algorithm, and in the
case of the SQP algorithm, one sample is related to the obtained result of each run. The
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second and third column of Table 2 contain the mean and the standard deviation of the
samples. In the fourth and fifth columns, the mean of the maximum (the worst) and
minimum (the best) performance function value of individuals in the last generation
for all runs is given. In the sixth column, the deviation percentage between the mean
best individual (fifth column) for each algorithm from the best result given in the
same column (specified by DE Best 1 Bin mean(J̄best) = 8.57936921e − 3) is shown.
In order to know how many of the runs reach the optimal solution, the percentage
of best individuals per each run that stay in a neighborhood of 8.57e − 4% from the
global solution is presented in the last column (%BI) of the same table. This small
neighborhood is selected since we are interested in finding the optimal gains of the
control system which carry out the most accurate trajectory tracking with the lowest
energy consumption. On the other hand, the best results are remarked in boldface.

Different findings are observed in Table 2 and these are summarized as follows:

• The most competitive algorithms are given by DE Best 1 Bin and DE Best 1 Exp
because they obtain the smallest value of the performance function (see columns
2 and 5), and also in all runs find an individual in the neighborhood of the
global solution (see column 7). This indicates that exploiting the best individual
generated through generations promotes the search for promising solutions.

• All swarm based optimization algorithms such as PSO, BA and FA present bad
convergence of solutions presented in the last generation (see third column). This
is attributed to the lack of a selection process into the search mechanism which
is the main characteristic of those swarm based techniques. In spite of such bad
convergence, some few solutions into the swarm converge to a good solution as
can be seen in the fifth column.

• It is clear that the gradient-based algorithm (SQP) does not perform well in
such problems and also presents high sensitivity to initial conditions because
only four runs from a total of one hundred runs converge to local solutions (the
rest of runs diverge). This indicates that the problem is multi-modal and hence
the obtained solution with this algorithm hardly reach the global one with the
chosen initial conditions.

• It is observed that the most reliable algorithms in the search for the global
solution are DE Best 1 Bin, DE Best 1 Exp, DE Rand 1 Bin, DE Rand 1 Exp
and GA because all runs reach the neighborhood of the global solution (see last
column).

• Another important fact is that in spite of presenting small performance dif-
ferences among algorithms (see column 6), for highly accurate applications in
Small-Scale Robotics (Paprotny and Bergbreiter 2014), these differences could
be very large. Therefore, the importance of this study lies in knowing the behav-
ior of different optimizers in the control gain tuning for Omnidirectional Mobile
Robots.

Non-parametric inferential statistical tests (Derrac et al. 2011) are applied to the
results obtained in the samples of runs. As a first step, the 95%-confidence Friedman
test is applied. According to the returned p-value (9.0311e − 53) shown in Table S1,
significant differences among meta-heuristic algorithm runs are observed and the ranks
of the Friedman test indicate that DE Best 1 Bin is the best performing algorithm of
the comparison with a rank of 1. Then, with the purpose of drawing general conclu-
sions about the algorithm performance and finding accurate pairwise comparisons, the
Friedman test for multiple comparisons with the most representative post-hoc error
correction methods (Derrac et al. 2011) is presented in Table S2. Also, Table 3 sum-
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Table 2. Descriptive statistical summary of the algorithm behavior. DE-R1B: DE Rand 1 Bin, DE-R1E: DE
Rand 1 Bin, DE-B1B: DE Best 1 Bin, DE-B1E: DE Best 1 Exp, DE-CR1: DE Current to Rand 1, DE-CB1:
Current to Best 1, DE-CR1B: Current to Rand 1 Bin, DE-CB1B: Current to Best 1 Bin.

Algorithm Mean(J̄) σ(J̄) Mean(J̄worst) Mean(J̄best) V ar(J̄)% %BI

DE-R1B 8.5793692185e − 3 8.9e− 13 8.579369221e − 3 8.57936921701e − 3 8.8e− 9 30
DE-R1E 8.5793694598e − 3 2.8e− 10 8.579371416e − 3 8.57937110014e − 3 5.3e− 7 30
DE-B1B 8.5793692162e− 3 3.1e− 17 8.579369216e− 3 8.579369216251e− 3 0 30

DE-B1E 8.5793692163e− 3 2.6e− 13 8.579369217e− 3 8.579369216257e− 3 7.2e− 11 30

DE-CR1 8.5795668517e − 3 3.4e− 8 8.579644146e − 3 8.57948993394e − 3 1.4e− 3 0
DE-CB1 8.5795131759e − 3 2.0e− 8 8.579556045e − 3 8.57946539341e − 3 1.1e− 3 11
DE-CR1B 8.5794242931e − 3 1.7e− 8 8.579457351e − 3 8.57939143686e − 3 2.5e− 4 22
DE-CB1B 8.5794288424e − 3 1.3e− 8 8.5794651230 − 3 8.57940095901e − 3 3.6e− 4 22
PSO 6.6666666666e + 76 4.7e+ 77 3.333333333e + 78 8.57962281939e − 3 2.9e− 3 0
BA 2.2e+ 78 7.6e+ 78 3.0e+ 79 8.58132029268e − 3 2.2e− 2 0
FA 6.6666666666e + 76 4.7e+ 77 3.333333333e + 78 8.57973314153e − 3 4.2e− 3 0
GA 8.5793692171e − 3 9.4e− 15 8.579369217e − 3 8.57936921717e − 3 1.0e− 8 30
SQP 2.9255373256e + 40 5.8e+ 40 1.170214930e + 41 8.58192995713e − 3 100 0

marizes the number of wins of algorithms with such a test. The statistical significance
is set as 5% and 10% to draw more reliable conclusions. Only in the particular case
of SQP, the test is not carried out because of the lack of samples (only four runs
from one hundred converge to a solution). We can conclude with a 99.99% confidence,
that the best algorithm performance in control tuning for the Omnidirectional Mobile
Robot is DE Best 1 Bin. When DE Best 1 Bin is compared with DE Best 1 Exp
or GA, the comparison is not conclusive. In all other comparisons, the DE Best 1
Bin is superior. Then, the next best algorithms are given by DE Best 1 Exp and GA
because they outperform the performance of seven and six algorithms, respectively
and also, there are no other algorithms that outperform their behavior. As the main
feature of the best algorithm (DE Best 1 Bin) and the second best (DE Best 1 Exp)
is the inclusion of the best individual in the optimization process. This confirms that
including such individual into the mutation process promotes the exploitation of the
feasible region and hence enhances the ability to find better solutions. Furthermore,
the worst performance is provided by the BA, FA and PSO algorithms due to they do
not exceed the performance of any other algorithm. This bad behavior is attributed
to the lack of a selection mechanism in those swarm optimization techniques. On the
other hand, twenty-five comparisons cannot be conclusive (when p − value > 0.1 in
Table S2, those comparative cases are named as Non Conclusive Data (NCD)) because
there is no compelling evidence between samples to confirm which algorithm is better,
indicating that the differences between such algorithms are due to chance.

The performance function convergence behavior through generations/iterations of
the best run of each algorithm is displayed in Fig. 2a and zoom is shown in Fig. 2b.
It is observed that SQP does not perform as well as the meta-heuristic algorithms
because of the nonlinear characteristic of the optimization problem. On the other
hand, if we set a convergence point of 5e − 9 in the performance function value, the
meta-heuristic algorithms which present faster convergence towards this point, are in
the following order: DE Best 1 Bin and GA in the generation 94, DE Best 1 Exp in
the generation 112, DE Current to Best 1 Bin in the generation 141 and DE Rand 1
Bin in the generation 199. Hence, DE Best 1 Bin, GA and DE Best 1 Exp provide the
fastest convergence to the optimal solution. The above indicates that a balance in the
convergence behavior at the beginning and in the last generations of the algorithm
must be considered to find the best solution, i.e., promoting diversity of solutions at
the beginning of the search, and the exploitation of the neighborhood solutions in the
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Table 3. Number of wins of each algorithm based on the results of the multiple comparison test with different
significance levels (5% and 10%). In addition Non Conclusive Data (NCD) are presented.

Algorithm Wins(5%) Wins(10%) NCD

DE Best 1 Bin 9 9 2
DE Best 1 Exp 7 7 4
GA 6 7 4
DE Rand 1 Bin 5 5 5

DE Current to Best 1 Bin 5 5 5
DE Rand 1 Exp 3 3 5
DE Current to Rand 1 Bin 3 3 5
DE Current to Best 1 2 2 4
BA 0 0 3
PSO 0 0 3
FA 0 0 4
DE Current to Rand 1 0 0 6
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Figure 2. Performance function behavior of the best runs of each algorithm.

last generations, can improve the performance of the algorithm. This fact is observed
in the cases of DE Best 1 Bin, DE Best 1 Exp and GA, where the diversity of solutions
is efficiently given in early generations, and the exploitation is exhaustively provided
in the next generations.

4.2. Optimal control gain analysis in a laboratory prototype

After the analysis of the algorithm performance in simulation, we are also interested in
performing an experimental study to know whether the best optimal design variable
vectors obtained from each algorithm present different behavior for a real application
tested in a laboratory prototype. This analysis is essential due to several optimal design
variable vectors have a similar value as is displayed in Table 4. It is clear that if the
optimization problem includes all uncertainties presented in the laboratory prototype,
then there will not be significant differences in the performance of the control system
for the mobile robot tracking. Nevertheless, several uncertainties are presented in the
laboratory prototype which are not modeled or estimated in the optimization problem,
such as the wear, the heating, the exact mobile robot parameters, etc. Then, in the next
analysis, thirty-five independent real-time experiments through a laboratory prototype
are carried out by each set of control gains shown in Table 4, to analyze and draw
conclusions about the influence of such control gains (with small differences) in the
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control system performance within a real environment.

Table 4. The best optimal control gain vectors obtained from proposed algorithms with the corresponding
performance function J̄ in simulation. DE-R1B: DE Rand 1 Bin, DE-R1E: DE Rand 1 Bin, DE-B1B: DE Best
1 Bin, DE-B1E: DE Best 1 Exp, DE-CR1: DE Current to Rand 1, DE-CB1: Current to Best 1, DE-CR1B:
Current to Rand 1 Bin, DE-CB1B: Current to Best 1 Bin.

Algorithm kp∗
1

kp∗
2

kp∗
3

kd∗
1

kd∗
2

kd∗
3

J̄ (SIMULATION)

DE −B1B 1829.972 4937.868 2578.833 24.999 24.999 15.898 8.5793692162515e− 3

DE −B1E 1829.970 4937.871 2579.796 24.999 24.999 15.906 8.5793692162517e− 3

DE-CB1B 1829.970 4937.858 2579.961 24.999 24.999 15.901 8.5793692162519e − 3
GA 1830.083 4937.888 2579.399 25.000 24.999 15.904 8.5793692162631e − 3
DE-R1B 1829.994 4937.759 2569.184 24.999 24.999 15.928 8.5793692164067e − 3
DE-CR1B 1830.186 4937.781 2572.355 24.999 24.999 15.681 8.5793692167287e − 3
DE-CB1 1829.801 4938.097 2408.343 24.999 24.999 14.798 8.5793692171431e − 3
DE-R1E 1831.292 4937.167 2295.941 24.999 24.999 15.881 8.5793692226228e − 3
DE-CR1 1809.147 4898.050 761.920 24.999 24.963 12.539 8.5793711757111e − 3
PSO 1819.113 4933.728 2093.248 24.923 24.994 18.419 8.5793833630071e − 3
FA 1810.534 3754.527 1227.129 24.999 21.668 9.820 8.5794742810212e − 3
BA 1744.975 2520.802 233.882 24.828 19.555 4.090 8.5797370229618e − 3
SQP 2728.778 804.134 900.835 25.000 17.212 13.134 8.5819299571437e − 3

Fig. 3 shows the laboratory prototype which consists of an Omnidirectional Mobile
Robot, a power source, and a computer display. The OMR was designed and developed
by using optimization techniques to maximize its ability by properly locating the
omnidirectional wheels (Villarreal-Cervantes et al. 2012). The OMR includes a Mini-
ITX GA-D425TUD motherboard with an Intel Atom D525 processor, an embedded
data acquisition system ”Sensoray 626” and DC motor drivers ”Advanced Motion
model 12A8”. The motherboard computes the control law in a Simulink program
with Real-Time Windows Target, interacts with sensors and drivers through the data
acquisition system and uses an odometry system (Guerrero-Castellanos et al. 2014)
to obtain the position and velocity of the mobile robot at 200 Hz. The power source
provides the corresponding voltage to the motherboard and drivers of actuators, and
the computer display is only connected to the motherboard to start the experiments
and to get the results. A graphical view of the closed-loop system of the OMR with
the Cartesian space PD control is shown in Fig. 4.

The descriptive statistical summary of the thirty executions of the task in the Omni-
directional Mobile Robot with the best-fixed control gains obtained by each algorithm
is shown in Table 5.

In order to draw general conclusions about the performance of the control gains
obtained through different algorithms, the 95%-confidence Friedman test shown in
Table S3 was first applied which based on the returned p-values (2.3511e−42), indicates
that significant differences are presented among meta-heuristic algorithm runs and also
the best rank in the Friedman test is provided by the DE Best 1 Bin.

Then, the Friedman test for multiple comparisons with the Holm and Shaffer post-
hoc error correction methods is presented in Table S4, where a summary of the number
of wins and Non-Conclusive Data (NCD) of the control system performance based on
the corresponding gains is shown in Table 6. NCD refers to such comparisons where
p−value > 0.1 and hence, there is no compelling evidence between samples to confirm
that the differences between such control gains are not due to chance. This test uses the
two-sided alternative hypothesis with a statistical significance of 5% and 10%. Based
on the descriptive and inferential statistical tests we can conclude the following:

• With a 99.99% confidence in nine comparisons, the best control gains in the
laboratory test are provided by DE Best 1 Bin. Only in the comparisons with
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Figure 3. Omnidirectional mobile robot platform.

Figure 4. Block diagram of the control strategy.

SQP, BA, and FA the differences among samples are not conclusive.
• Enough statistical evidence indicates that control gains obtained by SQP, BA,

and FA are the second, third and fourth best alternatives, respectively. This fact
is attributed due to there being no statistical evidence that others algorithms
outperform the trajectory tracking and the energy consumption of the control
system in the Omnidirectional Mobile Robot.

• The results indicate that 48.71% of all comparisons cannot confirm the significant
difference between the performances related to the proposed control gains (see
the comparisons where p − value > 0.1 in Table S4 and NCD 6= 0 in Table 6),
i.e., such control system performances can present performance differences due
to chance. On the other hand, there is enough evidence that small variations
in control gains can provide different performances in the tracking and energy
consumption of the OMR. Two examples of this situation are the comparison
between DE Current to Best 1 Bin with DE Rand 1 Bin, and DE Best 1 Bin
with DE Best 1 Exp. In spite of presenting very similar control gains (see Table
4), the statistical test indicates that DE Current to Best 1 Bin is better than
DE Rand 1 Bin, and DE Best 1 Bin is better than DE Best 1 Exp with a
99.99% confidence (see Table S4). For a particular case, the laboratory test
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analysis statistically indicates that 75% of comparisons with the best control
gains obtained by DE Best 1 Bin, present different performance functions in
spite of presenting slightly different control gains. Hence, small differences in
the mobile robot control gains in a real environment (see Table 4) can provide
different control system performances.

• The standard deviation in the fourth column of Table 5 can provide quantitative
evidence of the performance function variation due to environmental uncertain-
ties. It is observed that control gains obtained by PSO present more sensitivity
to the environment uncertainties.

Table 5. Descriptive statistical summary of the experimental results.

Algorithm Mean(J̄∗) Median(J̄∗) σ(J̄∗) J̄∗

worse J̄∗

best

DE Rand 1 Bin 58.1411 58.1658 0.3263 58.8191 57.6337
DE Rand 1 Exp 57.5457 57.5568 0.2257 58.1335 57.0373
DE Best 1 Bin 56.8823 56.7379 0.3164 57.7021 56.5751

DE Best 1 Exp 57.3113 57.4141 0.3245 57.8261 56.6051
DE Current to Rand 1 57.3202 57.3740 0.2583 57.8857 56.8000
DE Current to Best 1 57.9077 57.9367 0.2922 58.4882 57.4576
DE Current to Rand 1 Bin 57.9106 58.0015 0.3325 58.2249 56.9457
DE Current to Best 1 Bin 57.4090 57.3750 0.1634 57.7101 57.1545
PSO 57.4765 57.6654 0.4432 58.0740 56.7077
BA 57.0859 56.9366 0.3383 57.8345 56.7997
FA 57.1683 57.0377 0.2377 57.7247 56.9210
GA 57.3448 57.3297 0.1635 57.7916 57.0469
SQP 57.1372 57.2118 0.2359 57.4797 56.7439

Table 6. Number of wins of each algorithm based on the results of the multiple comparison test (laboratory
test comparison) with different significance levels (5% and 10%) and Non Conclusive Data (NCD) of each
control gain obtained by each algorithm.

Algorithm Wins(5%) Wins(10%) NCD

DE Best 1 Bin 9 9 3
SQP 6 6 6
BA 5 5 7
FA 5 5 7
DE Current to Best 1 Bin 3 3 7
DE Current to Rand 1 3 3 8
DE Best 1 Exp 3 3 8
GA 3 3 8
PSO 2 2 6
DE Rand 1 Exp 1 1 7
DE Rand 1 Bin 0 0 2
DE Current to Rand 1 Bin 0 0 3
DE Current to Best 1 0 0 4

In Table 7, the Euclidean dxy and angular dφ distances between the generated real
trajectory and the desired one, and also the energy consumption are displayed for
the more reliable control gains in the experimental results. It is observed that the
Cartesian distance error interval is suitable for the application and also similar energy
is consumed. In Fig. 5, the OMR movements with the corresponding control input
with the best gains obtained by DE Best 1 Bin is shown in experimentation and a
video demonstration is given in https://youtu.be/Uishmg4mUBA. The control system
can efficiently track the desired trajectory with a mean error of around 6.4261e − 3m
and 1.0003e − 3rad; and also with an average energy consumption of 0.22942Wh.

It is clear that the control tuning approach presented in Section 2 is based on a spe-
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Table 7. Characteristic of the distance between the generated real trajectory and the desired one in the
experimental results. mean, [max,min] and E indicate the average, maximum and minimum of the distance
vector dxy and energy.

Algorithm mean(dxy) [m] [max,min] [m] mean(dφ) [rad] [max,min] [rad] E [Wh]

DE Best 1 Bin 6.4261e − 3 [1.3e− 2, 3.4e− 7] 1.0003e− 3 [5.5e− 3, 1.7e− 7] 0.2294
BA 1.6003e − 3 [3.9e− 3, 9.5e− 7] 5.1501e− 3 [2.8e− 2, 1.5e− 7] 0.2296
FA 1.3892e − 3 [3.8e− 3, 2.2e− 6] 9.8485e− 4 [5.4e− 3, 4.2e− 8] 0.2299
SQP 2.7373e − 3 [6.3e− 3, 4.8e− 6] 1.3396e− 3 [7.4e− 3, 2.0e− 9] 0.2300

LQR 8.4354e − 3 [1.8e− 2, 4.7e− 5] 6.4580e− 4 [3.5e− 3, 2.4e− 8] 0.2307

cific trajectory. Nevertheless, the best (“optimal”) gains obtained with this approach
can track other elemental paths that can be used for characterization in trajectory
planning (Wang and Tsai 2004; Lacevic, Velagic, and Hebibovic 2005): the circle, the
Lemniscate curve, and the straight line. The above is confirmed with the suitable per-
formance of the proposal shown in Fig. 6, where different paths in Xw−Yw are tracked
by the OMR using the control gains obtained with DE Best 1 Bin. Then, offline control
tuning approach not only carries out a specific trajectory but also other trajectories
with a suitable control performance.

As a matter of reference, a gain-scheduled Linear Quadratic Regulator (LQR) with
feedforward (Åström and Murray 2008) is implemented in the experimental stage
for the tracking of the hypocycloid path with the OMR. In this, a model lineariza-
tion is required to find a set of state feedback gains for each sampling time instant.
The regulator gains are offline scheduled, and each set of gains are obtained by us-
ing the LQR command in Matlab considering Q = diag{1e3, 1e3, 1e3, 1, 1, 1} ∈ R6×6

and R = diag{0.01, 0.01, 0.01} ∈ R3×3 into the single-objective optimization problem
which uses a quadratic cost function related to the tracking error and the magnitude
of the control signal. Table 7 indicates that the gain-scheduled LQR can also achieve
promising results when compared with the optimally tuned PD controllers. The above
because, like the proposal, the LQR is based on an optimization approach. Neverthe-
less, as the LQR approach is based on a model linearization (lack of nonlinear model
dynamics into the optimization problem), the obtained set of LQR gains implemented
in the real prototype present more Euclidian distance error and energy consumption
than the control performance with the obtained gains based on meta-heuristic algo-
rithms. On the other hand, the performance of the LQR is also contrasted with the
huge complexity of the gain scheduling task. The above can be observed with the
26, 000 optimization processes required to schedule the gains for the tracking of the
hypocycloid path, considering the sampling time △t = 5ms and the execution time
tf = 130s. Unlike the gain-scheduled LQR, the proposal requires a single optimization
process to compute the optimal gains of the PD controller, which can be used to track
not only the highly non-linear hypocycloid path but a set of elemental trajectories.
Additionally, Fig. S1 shows the behavior of the LQR in the trajectory tracking task
of the OMR. It is observed that the LQR tracks the hypocycloid path in the inertial
coordinate system with a suitable orientation. Regarding the behavior of the PD con-
troller tuned by DE Best 1 Bin (see Fig. 5), it can be noticed that the magnitude of
Cartesian errors obtained with the LQR is considerably larger, while the magnitude
of the orientation error in both cases is very similar.
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Figure 5. Experimental results of the trajectory tracking and control system behavior of the OMR using the
gains obtained by DE Best 1 Bin.

5. Conclusion

In this paper, the Omnidirectional Mobile Robot control tuning is established in the
framework of the optimization method where an offline dynamic optimization approach
is proposed. The obtained solutions through a set of twelve different meta-heuristic
algorithms and one gradient technique reduce the trajectory tracking error and the
energy consumption of the control system. With the best control gains implemented
in a real OMR prototype, the mean trajectory tracking and the angular position error
are around 6.4261e − 3m and 1.0003e − 3rad, respectively, with an average energy
consumption of 0.22942Wh.

Statistical comparative analysis of algorithms indicates that the best algorithm for
the control tuning for the OMR is given by DE Best 1 Bin because it includes the best
individual in the evolutionary process which efficiently exploits the search space. In the
OMR control tuning, the swarm based algorithms studied in this paper do not present
an efficient search for solutions. This last is attributed to the lack of a replacement
mechanism (selection process).

The OMR control tuning complexity is highlighted when the gradient-based algo-
rithm is used. The main issue is the algorithm divergence (96% of runs) and the high
sensitivity to viable initial conditions (4% of runs) such that the convergence to a
local minimum is guaranteed. Therefore, this indicates that the optimization problem
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Figure 6. Experimental results with different trajectories developed by the mobile robot using the gains
obtained by DE Best 1 Bin.

is highly multi-modal.
The experimental analysis indicates that in spite of presenting uncertainties not

included in the optimization problem, small differences in the obtained control gains
influence the OMR performance in the trajectory tracking and the energy consump-
tion. Also, the suitable behavior in the control performance for simulation and ex-
perimental tests confirms that in spite of presenting uncertainties (inaccuracy in the
kinematic and dynamic parameters and the lack of nonlinear dynamics such as the
motor dynamics) in the experimental tests, the obtained control gains in simulation
can be used in the real scenario.

Even when the OMR control is tuned to track a highly non-linear trajectory
(hypocycloid path), the obtained control parameters can be used to follow other el-
emental curves with an outstanding performance i.e., the proposal presents a higher
trajectory change flexibility.

Comparisons with a gain-scheduled LQR based on a model linearization highlight
advantages of optimization tuning methods and particularly some benefits of the pro-
posal including a higher performance in the trajectory tracking task of the OMR and
a less computational complexity.
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Derrac, Joaqúın, Salvador Garćıa, Daniel Molina, and Francisco Herrera. 2011. “A practical
tutorial on the use of nonparametric statistical tests as a methodology for comparing evo-
lutionary and swarm intelligence algorithms.” Swarm and Evolutionary Computation 1 (1):
3–18.

Fister, Iztok, Iztok Fister, Xin-She Yang, and Janez Brest. 2013. “A comprehensive review of
firefly algorithms.” Swarm and Evolutionary Computation 13: 34–46.

Fleming, Peter J, and Robin C Purshouse. 2002. “Evolutionary algorithms in control systems
engineering: a survey.” Control Engineering Practice 10 (11): 1223–1241.

Fong, Simon, Suash Deb, and Ankit Chaudhary. 2015. “A review of metaheuristics in robotics.”
Computers & Electrical Engineering 43: 278–291.

Guerrero-Castellanos, J.F., M.G. Villarreal-Cervantes, J.P. Sánchez-Santana, and S. Ramı́rez-
Mart́ınez. 2014. “Seguimiento de trayectorias de un robot móvil (3,0) mediante control
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Rodŕıguez-Molina, Alejandro, Miguel G. Villarreal-Cervantes, Jaime Álvarez Gallegos, and
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Table S1. Ranks achieved by the Friedman test in the main study case. The computed statistics and the
related p-value are also shown.

Algorithms Ranks

DE Best 1 Bin 1
DE Best 1 Exp 2.367
GA 3.667
DE Current to Best 1 Bin 4.2
DE Rand 1 Bin 4.433
DE Rand 1 Exp 6.433
DE Current to Rand 1 Bin 6.6
DE Current to Best 1 7.7
DE Current to Rand 1 9
FA 10.2
BA 11.12
PSO 11.28

Statistic 301.2
p-value 4.8568E-58



Table S2. Adjusted p-values for multiple comparison test among all methods. Boldface indicates the 5%
significance level. Boldface with asterisks indicates the 10% significance level.

Hypotesis Unajusted p Holm Shaffer z
BA vs DE Best 1 Bin 0 0 0 10.87
BA vs DE Best 1 Exp 0 0 0 9.399
BA vs DE Current to Best 1 2.4247E-04 7.2740E-03 7.2740E-03 3.67
BA vs DE Current to Best 1 Bin 1.0880E-13 6.0929E-12 5.9841E-12 7.43
BA vs DE Current to Rand 1 2.2986E-02 3.9076E-01 3.9076E-01 2.274
BA vs DE Current to Rand 1 Bin 1.2242E-06 4.7744E-05 4.7744E-05 4.852
BA vs DE Rand 1 Bin 7.0188E-13 3.7200E-11 3.2287E-11 7.179
BA vs DE Rand 1 Exp 4.8867E-07 2.0524E-05 1.9058E-05 5.031
BA vs FA 3.2479E-01 1 1 0.9847
BA vs GA 1.1102E-15 6.4393E-14 6.1062E-14 8.003
BA vs PSO 8.5792E-01 1 1 -0.179
DE Best 1 Bin vs DE Best 1 Exp 1.4209E-01 1 1 -1.468
DE Best 1 Bin vs DE Current to Best 1 6.1573E-13 3.3249E-11 2.8324E-11 -7.197
DE Best 1 Bin vs DE Current to Best 1 Bin 5.8743E-04 1.6448E-02 1.6448E-02 -3.437
DE Best 1 Bin vs DE Current to Rand 1 0 0 0 -8.593
DE Best 1 Bin vs DE Current to Rand 1 Bin 1.7948E-09 8.6151E-08 8.2562E-08 -6.015
DE Best 1 Bin vs DE Rand 1 Bin 2.2603E-04 7.0070E-03 7.0070E-03 -3.688
DE Best 1 Bin vs DE Rand 1 Exp 5.3361E-09 2.5080E-07 2.4546E-07 -5.836
DE Best 1 Bin vs FA 0 0 0 -9.882
DE Best 1 Bin vs GA 4.1772E-03 1.0443E-01 1.0443E-01 -2.864
DE Best 1 Bin vs PSO 0 0 0 -11.05
DE Best 1 Exp vs DE Current to Best 1 1.0107E-08 4.6493E-07 4.6493E-07 -5.729
DE Best 1 Exp vs DE Current to Best 1 Bin 4.8917E-02 6.8484E-01 6.8484E-01 -1.969
DE Best 1 Exp vs DE Current to Rand 1 1.0383E-12 5.3991E-11 4.7761E-11 -7.125
DE Best 1 Exp vs DE Current to Rand 1 Bin 5.4331E-06 2.0646E-04 2.0102E-04 -4.547
DE Best 1 Exp vs DE Rand 1 Bin 2.6422E-02 4.2275E-01 4.2275E-01 -2.22
DE Best 1 Exp vs DE Rand 1 Exp 1.2522E-05 4.6330E-04 4.6330E-04 -4.368
DE Best 1 Exp vs FA 0 0 0 -8.414
DE Best 1 Exp vs GA 1.6259E-01 1 1 -1.396
DE Best 1 Exp vs PSO 0 0 0 -9.578
DE Current to Best 1 vs DE Current to Best 1 Bin 1.7018E-04 5.4459E-03 5.2757E-03 3.76
DE Current to Best 1 vs DE Current to Rand 1 1.6259E-01 1 1 -1.396
DE Current to Best 1 vs DE Current to Rand 1 Bin 2.3737E-01 1 1 1.182
DE Current to Best 1 vs DE Rand 1 Bin 4.4986E-04 1.3046E-02 1.3046E-02 3.509
DE Current to Best 1 vs DE Rand 1 Exp 1.7363E-01 1 1 1.361
DE Current to Best 1 vs FA 7.2436E-03 1.6660E-01 1.6660E-01 -2.685
DE Current to Best 1 vs GA 1.4743E-05 5.3074E-04 5.3074E-04 4.332
DE Current to Best 1 vs PSO 1.1854E-04 3.9120E-03 3.7459E-03 -3.849
DE Current to Best 1 Bin vs DE Current to Rand 1 2.5224E-07 1.0847E-05 9.8375E-06 -5.156
DE Current to Best 1 Bin vs DE Current to Rand 1 Bin 9.9370E-03 2.1861E-01 2.1861E-01 -2.578
DE Current to Best 1 Bin vs DE Rand 1 Bin 8.0209E-01 1 1 -0.2506
DE Current to Best 1 Bin vs DE Rand 1 Exp 1.6441E-02 3.1237E-01 3.1237E-01 -2.399
DE Current to Best 1 Bin vs FA 1.1557E-10 5.7787E-09 5.3164E-09 -6.445
DE Current to Best 1 Bin vs GA 5.6672E-01 1 1 0.5729
DE Current to Best 1 Bin vs PSO 2.7756E-14 1.5821E-12 1.5266E-12 -7.609
DE Current to Rand 1 vs DE Current to Rand 1 Bin 9.9370E-03 2.1861E-01 2.1861E-01 2.578
DE Current to Rand 1 vs DE Rand 1 Bin 9.3243E-07 3.7297E-05 3.6365E-05 4.905
DE Current to Rand 1 vs DE Rand 1 Exp 5.8327E-03 1.3998E-01 1.3998E-01 2.757
DE Current to Rand 1 vs FA 1.9740E-01 1 1 -1.289
DE Current to Rand 1 vs GA 1.0107E-08 4.6493E-07 4.6493E-07 5.729
DE Current to Rand 1 vs PSO 1.4179E-02 2.8358E-01 2.8358E-01 -2.453
DE Current to Rand 1 Bin vs DE Rand 1 Bin 1.9945E-02 3.5902E-01 3.5902E-01 2.327
DE Current to Rand 1 Bin vs DE Rand 1 Exp 8.5792E-01 1 1 0.179
DE Current to Rand 1 Bin vs FA 1.1017E-04 3.7459E-03 3.7459E-03 -3.867
DE Current to Rand 1 Bin vs GA 1.6277E-03 4.3947E-02 4.3947E-02 3.151
DE Current to Rand 1 Bin vs PSO 4.8867E-07 2.0524E-05 1.9058E-05 -5.031
DE Rand 1 Bin vs DE Rand 1 Exp 3.1686E-02 4.7530E-01 4.7530E-01 -2.148
DE Rand 1 Bin vs FA 5.8510E-10 2.8670E-08 2.6915E-08 -6.194
DE Rand 1 Bin vs GA 4.1021E-01 1 1 0.8235
DE Rand 1 Bin vs PSO 1.8652E-13 1.0258E-11 1.0258E-11 -7.358
DE Rand 1 Exp vs FA 5.2089E-05 1.8231E-03 1.7710E-03 -4.046
DE Rand 1 Exp vs GA ∗∗ 2.9599E-03 7.6956E-02 ∗∗ 7.3996E-02 ∗∗ 2.972
DE Rand 1 Exp vs PSO 1.8911E-07 8.3208E-06 7.3753E-06 -5.21
FA vs GA 2.2518E-12 1.1484E-10 1.0358E-10 7.018
FA vs PSO 2.4455E-01 1 1 -1.164
GA vs PSO 2.2204E-16 1.3101E-14 1.2212E-14 -8.182



Table S3. Ranks achieved by the Friedman test in the main study case (laboratory test comparison). The
computed statistics and the related p-value are also shown.

Algorithms Ranks

DE Best 1 Bin 2.2
SQP 3.533
BA 3.967
FA 4.333
DE Best 1 Exp 5.933
GA 6.2
DE Current to Rand 1 6.5
DE Current to Best 1 Bin 6.9
PSO 8.033
DE Rand 1 Exp 8.733
DE Current to Best 1 11
DE Current to Rand 1 Bin 11.3
DE Rand 1 Bin 12.37

Statistic 238.9
p-value 2.8262E-44
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Figure S1. Experimental results of the trajectory tracking and control system behavior of the OMR using
the gains obtained by the LQR.



Table S4. Adjusted p-values for the multiple comparison test among all methods (laboratory test compari-
son). Boldface indicates the 5% significance level. Boldface with asterisks indicates the 10% significance level.

Hypotesis Unajusted p Holm Shaffer z
BA vs DE Best 1 Bin 7.8929E-02 ∗∗ 1 1 1.757
BA vs DE Best 1 Exp 5.0485E-02 ∗∗ 1 1 -1.956
BA vs DE Current to Best 1 2.6605E-12 1.8358E-10 1.7560E-10 -6.995
BA vs DE Current to Best 1 Bin 3.5322E-03 1.2716E-01 1.2716E-01 -2.917
BA vs DE Current to Rand 1 1.1756E-02 3.6445E-01 3.6445E-01 -2.519
BA vs DE Current to Rand 1 Bin 3.0331E-13 2.1232E-11 2.0019E-11 -7.293
BA vs DE Rand 1 Bin 0 0 0 -8.354
BA vs DE Rand 1 Exp 2.1329E-06 1.1518E-04 1.0238E-04 -4.74
BA vs FA 7.1538E-01 1 1 -0.3646
BA vs GA 2.6349E-02 7.1142E-01 7.1142E-01 -2.221
BA vs PSO 5.2489E-05 2.3620E-03 2.3620E-03 -4.044
BA vs SQP 6.6651E-01 1 1 0.4309
DE Best 1 Bin vs DE Best 1 Exp 2.0501E-04 8.8154E-03 8.6103E-03 -3.713
DE Best 1 Bin vs DE Current to Best 1 0 0 0 -8.752
DE Best 1 Bin vs DE Current to Best 1 Bin 2.9524E-06 1.5648E-04 1.4171E-04 -4.674
DE Best 1 Bin vs DE Current to Rand 1 1.9002E-05 8.9308E-04 8.7408E-04 -4.276
DE Best 1 Bin vs DE Current to Rand 1 Bin 0 0 0 -9.05
DE Best 1 Bin vs DE Rand 1 Bin 0 0 0 -10.11
DE Best 1 Bin vs DE Rand 1 Exp 8.1754E-11 5.3958E-09 5.3958E-09 -6.497
DE Best 1 Bin vs FA 3.3873E-02 8.1295E-01 8.1295E-01 -2.122
DE Best 1 Bin vs GA 6.9509E-05 3.0584E-03 2.9194E-03 -3.978
DE Best 1 Bin vs PSO 6.5845E-09 4.0824E-07 3.6873E-07 -5.801
DE Best 1 Bin vs SQP 1.8484E-01 1 1 -1.326
DE Best 1 Exp vs DE Current to Best 1 4.6858E-07 2.6709E-05 2.6240E-05 -5.039
DE Best 1 Exp vs DE Current to Best 1 Bin 3.3638E-01 1 1 -0.9613
DE Best 1 Exp vs DE Current to Rand 1 5.7306E-01 1 1 -0.5635
DE Best 1 Exp vs DE Current to Rand 1 Bin 9.4446E-08 5.6668E-06 5.2890E-06 -5.337
DE Best 1 Exp vs DE Rand 1 Bin 1.5754E-10 1.0240E-08 8.8223E-09 -6.398
DE Best 1 Exp vs DE Rand 1 Exp 5.3598E-03 1.8759E-01 1.8223E-01 -2.785
DE Best 1 Exp vs FA 1.1157E-01 1 1 1.591
DE Best 1 Exp vs GA 7.9086E-01 1 1 -0.2652
DE Best 1 Exp vs PSO 3.6759E-02 8.4546E-01 8.4546E-01 -2.088
DE Best 1 Exp vs SQP 1.6997E-02 4.9291E-01 4.9291E-01 2.387
DE Current to Best 1 vs DE Current to Best 1 Bin 4.5540E-05 2.0948E-03 2.0948E-03 4.077
DE Current to Best 1 vs DE Current to Rand 1 7.6338E-06 3.9696E-04 3.6642E-04 4.475
DE Current to Best 1 vs DE Current to Rand 1 Bin 7.6544E-01 1 1 -0.2983
DE Current to Best 1 vs DE Rand 1 Bin 1.7410E-01 1 1 -1.359
DE Current to Best 1 vs DE Rand 1 Exp 2.4185E-02 6.7718E-01 6.7718E-01 2.254
DE Current to Best 1 vs FA 3.3583E-11 2.2501E-09 2.2165E-09 6.63
DE Current to Best 1 vs GA 1.8100E-06 1.0136E-04 1.0136E-04 4.774
DE Current to Best 1 vs PSO 3.1744E-03 1.2063E-01 1.2063E-01 2.95
DE Current to Best 1 vs SQP 1.1235E-13 7.9772E-12 7.4154E-12 7.426
DE Current to Best 1 Bin vs DE Current to Rand 1 6.9078E-01 1 1 0.3978
DE Current to Best 1 Bin vs DE Current to Rand 1 Bin 1.2101E-05 6.0506E-04 5.8086E-04 -4.376
DE Current to Best 1 Bin vs DE Rand 1 Bin 5.4323E-08 3.3137E-06 3.0421E-06 -5.437
DE Current to Best 1 Bin vs DE Rand 1 Exp 6.8268E-02 ∗∗ 1 1 -1.823
DE Current to Best 1 Bin vs FA 1.0695E-02 3.5292E-01 3.4222E-01 2.553
DE Current to Best 1 Bin vs GA 4.8634E-01 1 1 0.6961
DE Current to Best 1 Bin vs PSO 2.5970E-01 1 1 -1.127
DE Current to Best 1 Bin vs SQP 8.1363E-04 3.2545E-02 3.1731E-02 3.348
DE Current to Rand 1 vs DE Current to Rand 1 Bin 1.8100E-06 1.0136E-04 1.0136E-04 -4.774
DE Current to Rand 1 vs DE Rand 1 Bin 5.4003E-09 3.4022E-07 3.0242E-07 -5.834
DE Current to Rand 1 vs DE Rand 1 Exp 2.6349E-02 7.1142E-01 7.1142E-01 -2.221
DE Current to Rand 1 vs FA 3.1183E-02 7.7958E-01 7.7958E-01 2.155
DE Current to Rand 1 vs GA 7.6544E-01 1 1 0.2983
DE Current to Rand 1 vs PSO 1.2729E-01 1 1 -1.525
DE Current to Rand 1 vs SQP 3.1744E-03 1.2063E-01 1.2063E-01 2.95
DE Current to Rand 1 Bin vs DE Rand 1 Bin 2.8879E-01 1 1 -1.061
DE Current to Rand 1 Bin vs DE Rand 1 Exp 1.0695E-02 3.5292E-01 3.4222E-01 2.553
DE Current to Rand 1 Bin vs FA 4.2597E-12 2.8966E-10 2.8114E-10 6.928
DE Current to Rand 1 Bin vs GA 3.9386E-07 2.2844E-05 2.2056E-05 5.072
DE Current to Rand 1 Bin vs PSO 1.1595E-03 4.5219E-02 4.5219E-02 3.249
DE Current to Rand 1 Bin vs SQP 1.1324E-14 8.1535E-13 7.4740E-13 7.724
DE Rand 1 Bin vs DE Rand 1 Exp 3.0231E-04 1.2395E-02 1.1790E-02 3.613
DE Rand 1 Bin vs FA 1.3323E-15 9.7256E-14 8.7930E-14 7.989
DE Rand 1 Bin vs GA 8.6405E-10 5.5299E-08 4.8387E-08 6.133
DE Rand 1 Bin vs PSO 1.6366E-05 7.8554E-04 7.8554E-04 4.309
DE Rand 1 Bin vs SQP 0 0 0 8.785
DE Rand 1 Exp vs FA 1.2101E-05 6.0506E-04 5.8086E-04 4.376
DE Rand 1 Exp vs GA 1.1756E-02 3.6445E-01 3.6445E-01 2.519
DE Rand 1 Exp vs PSO 4.8634E-01 1 1 0.6961
DE Rand 1 Exp vs SQP 2.3241E-07 1.3712E-05 1.3015E-05 5.171
FA vs GA 6.3399E-02 ∗∗ 1 1 -1.856
FA vs PSO 2.3359E-04 9.8107E-03 9.8107E-03 -3.68
FA vs SQP 4.2627E-01 1 1 0.7956
GA vs PSO 6.8268E-02 ∗∗ 1 1 -1.823
GA vs SQP 8.0023E-03 2.7208E-01 2.7208E-01 2.652
PSO vs SQP 7.6338E-06 3.9696E-04 3.6642E-04 4.475




